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Abstract

Combining Approximations for Inference

by Frederik Eaton

The problem of Bayesian statistical inference, or “approximate infer-
ence”, is fundamental to Bayesian Machine Learning and statistics. Much
effort has been spent in studying the application of approximate inference
techniques to specific models, or in analysing the behaviour of specific al-
gorithms. Here we address the broader goal of creating more powerful and
general approximate inference algorithms. We propose to embark upon this
long and difficult journey by first investigating the ways in which it can be ef-
fective to combine the outputs of multiple approximate inference algorithms.

In this thesis, we describe four such ways: partitioning a statistical model
between multiple approximations for cooperative solution (chapter 3), com-
petitively comparing the accuracy of two different approximations (chapter
4), exchanging information between two approximations, a “teacher” and a
“student” (chapter 5), and harnessing cooperation and competition in sim-
ulated evolution, in order to optimise over the space of approximations to a
model (chapter 6).
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Chapter 1

Introduction

In this chapter, we motivate our choice of “combining approximations” as a
research topic, after developing the reasoning which underlies our own view
of approximate inference as an approach to the study of artificial intelligence.

Chapter 2 reviews some of the technical background for approximate
inference and complexity theory, which is needed in the rest of the thesis.

1.1 The dream of Artificial Intelligence

We would like for computers to be more intelligent. We are tired of super-
vising them. Computers can be very good at producing quick responses to
simple questions, but when we use them to solve difficult problems we find
ourselves having to break our questions down, to oversee the solution of the
various parts, and this puts us in the position of responding to a tool which
we had wanted to be responding to us. We would like to be able to say:
“optimise this circuit” or “prove this theorem” and receive the results by
email, without having to worry about whether we specified the right pa-
rameters (search depth, annealing schedule) and without too much concern
that a competitor might be solving the same problem faster and with fewer
resources.

We will refer to this end goal as Artificial Intelligence (AI).
We don’t think of an AI as being defined interactively, as a computer

program which is able to carry on “polite conversation” masquerading un-
detected as a human.1 Our picture of AI is more like a computer program
which can emulate an idealised mathematician. It should be able to take

1A.M. Turing. “Computing machinery and intelligence”. In: Mind 59.236 (1950),
pp. 433–460.
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Chapter 1. Introduction 1.2. A PROBABILISTIC . . .

an abstract but well-defined problem and go away and work on it, consider-
ing all possible approaches, partitioning its time between them in a rational
manner, and returning a solution when it is done. The two definitions may
well be seen as equivalent, but we think that the second one leaves less room
for misinterpretation.

More precisely, interaction with an external environment may play a role
in the intellectual functioning of a real mathematician, but to the extent
that it does, he will usually be communicating with other mathematicians
regarding topics of shared interest. However, in such cases we could view
the totality of mathematicians as a single mathematician - we could imagine
putting them in a box, submitting a problem through a slot in this box, and
receiving a solution through the same slot. Thus, although successive cycles
of interaction, involving distinct notions of agent and environment, may be
helpful in describing the internal workings of this box, we do not see it as
playing a part in the outward definition of intelligence.

How should we go about trying to advance the goals of AI? In the rest
of this chapter, we attempt to address this question. We will sometimes use
technical terms or concepts, whose definitions we review in chapter 2. Read-
ers unfamiliar with these terms may wish to skip ahead and read chapter 2
before continuing.

1.2 A probabilistic approach to intelligence

Many past approaches to AI have proceeded by breaking down difficult prob-
lems using assorted application-specific rules and heuristics, in the hope that
such activities could build insight into the more general aspects of intelli-
gence. For instance, chess was once considered the domain of AI, and the
standard approach to solving it - traversing a game tree using heuristics to
control depth and to establish priority between branches - was typical of the
AI plan of the 1950-1980 period. Some of these methods were successful in
tackling specific, circumscribed problems, but none succeeded in elucidating
the general principles underlying intelligence. This failure has often been
attributed to the fact that such methods provided no general answer to the
difficult, which is to say presumably exponential time complexity of their
input problems. Heuristics which have been developed to work well against
one class of tasks, such as analysing chess positions, tend to break down
when that class is generalised (say, to include Go).

A fresh approach to AI might start by identifying some elementary fa-
cility common to all intelligence which allows for the concise representation

2



Chapter 1. Introduction 1.2. A PROBABILISTIC . . .

of difficult problems, for instance of the NP-complete variety, while abbre-
viating the more sophisticated behaviours of our idealised mathematician
- for example, his capacities for emotion, communication, or visualisation.
We could, for instance, theorise that since intelligence is able to work to-
wards goals, it must have the ability to choose between actions which would
have different utility in advancing it towards these goals. By quantising
such advancement into a unit of currency and offering such a system choices
between p units now or 1 unit if and only if some proposition (event) x
turns out to be true, we can discover a value p(x) at which the alternatives
have equal weight. A well-known theorem called the Dutch Book Theorem2

states that if the system is rational then the p(x) which has been elicited
in this way behaves like a probability in all salient respects. We call such
probabilities “beliefs” and conclude that intelligent systems can be made to
express beliefs about any potential set of events; these beliefs are encoded
as probabilities. We can describe many useful probability distributions in
terms of the relationships between small groups of variables. The problem of
calculating the marginals of a distribution specified in this manner is called
statistical inference. Performing statistical inference is known to be NP-
hard, which means that difficult problems such as boolean satisfiability can
be reduced to it, and so it fulfils our criterion for the sought-after facility:
it is fundamental, common to all intelligent systems; it consists of a simple
framework, based on probability theory; and at the same time it is difficult,
and capable of representing other difficult problems of interest.

A distinction can be drawn between two kinds of statistical inference: ex-
act inference, which produces marginals that are accurate within the limits
of machine precision, and approximate inference, which produces marginals
which are only accurate to within some possibly larger error bound.3 Both
problems are NP-hard, but we prefer to focus on approximate inference as
it is more general. Often, it is possible to cope with approximate marginals,
and considering approximate algorithms allows us to make trade-offs be-
tween time and accuracy. In such circumstances, the problem of approximate
inference must no longer be considered to have a certain time complexity,
because arbitrarily weak approximations can be produced within any given
time constraint. The term “statistical inference” will be used to refer to
both types of inference in this dissertation.

2B. De Finetti. “Probabilism: A critical essay on the theory of probability and on
the value of science”. In: Erkenntnis 31.2 (1989), pp. 169–223; E.T. Jaynes and G.L.
Bretthorst. Probability theory: the logic of science. Cambridge University Press, 2003.

3None of the algorithms which we consider are actually able to provide tight bounds
on the error of the marginals they produce, but such bounds exist in theory.

3



Chapter 1. Introduction 1.2. A PROBABILISTIC . . .

Crossing the border into a land where everything is a probability might
seem like a strange way to start a journey whose ultimate destination is to
emulate an idealised mathematician. Below we raise and respond to two
potential objections.

Symbolic representations A first objection to this plan could be that
we rarely hear people, even mathematicians, communicating directly about
probabilities. They may be uncertain or disagree, but they use words like
“maybe”, “definitely”, “possibly” rather than “0.5”, “0.95”, “0.1”. Perhaps
this shows that the use of symbols is more fundamental and should be exam-
ined first; or perhaps our intention to represent all the various correlations
between variables in a large model is misguided - that task is too difficult, we
should be using per-variable, “fuzzy” measures of uncertainty, and combine
them using local, approximate rules. In reply, we reiterate that it is actu-
ally possible to elicit probabilities from intelligent beings as described above;
whether probabilities are stored internally using a completely different - per-
haps symbolic or qualitative - form, for instance assigning greater certainty
to propositions which we have heard expressed in rhyme, an intelligent sys-
tem ought to be able to produce probabilities as output (e.g. when asked
to value a bet). Furthermore, beliefs elicited in this manner ought to be-
have like probabilities when we query joints or conditionals, and frameworks
such as fuzzy logic4 which ignore this desideratum can result in probability
estimates which are arbitrarily bad.

Deterministic models A second, more serious objection, would be that
the purpose of probabilities is to represent uncertainty about truly random
systems in our environment. A mathematician, on the other hand, deals
with deterministic statements, i.e. statements which are either true or false.
The same is true for a circuit optimiser, or a chess player. Surely the key to
modelling such systems is to have a proper internal representation of what is
known to be true, together with rules for extending this representation with
additional true statements, and some intelligent way to apply these rules.
Even if uncertain beliefs can be elicited, they are of little use since over time
any beliefs about propositions in the model should converge to 1 or 0. To
this objection we reply with the practical observation that mathematicians
can and do employ uncertainty at a very fundamental level. Any conjecture

4L.A. Zadeh. “Fuzzy sets”. In: Information and control 8.3 (1965), pp. 338–353;
D. Klaua. “Über einen Ansatz zur mehrwertigen Mengenlehre”. In: Monatsberichte der
Deutschen Akademie der Wissenschaften Berlin 7 (1965), pp. 859–867.

4



Chapter 1. Introduction 1.3. THE COMPLEXITY OF . . .

is uncertain until it is proven, and sometimes such uncertainty persists for
hundreds of years, even around important conjectures which are the focus
of much research. Deciding whether to try to prove any theorem requires
us to form beliefs about whether that theorem is true or not. And although
rules for using logic and applying axioms are deterministic, often one applies
heuristics or makes analogies which are non-deterministic in an attempt to
“reason backwards” from a theorem whose proof is desired. One might see
that A =⇒ B and form the hypothesis that B =⇒ A; in forward reason-
ing or “deduction” this would be an erroneous step, termed a “fallacy”5, but
in backwards reasoning, sometimes called “induction”, it could be used to
construct useful approximate beliefs about the statement B =⇒ A. Com-
bined with other heuristics, such approximate beliefs would help us decide
whether to further investigate B =⇒ A. Such inductive reasoning, though
approximate in nature, is described by many mathematicians as central to
their work.6 Finally, as an example we note that the Survey Propagation
algorithm for k-SAT is based on a fundamentally probabilistic analysis of
an inherently deterministic problem, yet has managed to advance the state
of the art for a certain class of deterministic problems - randomly generated
k-SAT instances. The success of such probabilistic approaches might be seen
as additional evidence in favour of a probabilistic approach to AI.

1.3 The complexity of inference

The foregoing section has argued that we should approach AI using frame-
works which are able to represent uncertainty, such as statistical inference.
Once we have decided upon statistical inference as the avenue through which
to investigate AI, we are confronted with another problem: the time com-
plexity of statistical inference. One of our reasons for selecting inference in
the first place was its NP-hardness, which means that it is able to repre-
sent7 NP problems, some of which are considered difficult yet amenable to
intelligent solution.

We should say a few words about why we are interested in members
of NP, rather than some other complexity class, as being representative of
the sort of difficult problems on the solution of which AI should be able
to distinguish itself. We could consider, for example the following problem:

5This particular fallacy is called “affirming the consequent”.
6G. Pólya. Mathematics and Plausible Reasoning: Patterns of plausible inference.

Princeton University Press, 1954.
7I.e. NP problems can be reduced to an NP-hard problem in polynomial time; see

section 2.5.
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given an input integer n (represented using log n bits), compute the result
of applying a standard cryptographic hash function n times in succession to
some initial string like “hello”. This is certainly a difficult problem, requiring
time exponential in the size of its input. But it doesn’t have the appearance
of being a useful problem to solve - even if it were possible to improve on
the time-complexity of the naive algorithm for solving it. This is in contrast
to problems in NP such as boolean satisfiability, or SAT, a canonical NP-
complete problem which is useful in many domains, such as scheduling and
optimisation of circuit layout. The difference may be due to the fact that NP
comprises that class of problems whose solutions can be verified easily (in
polynomial time) - for example, by checking that each SAT clause is satisfied
by the suggested variable assignment, or that the schedule has no conflicts or
the circuit layout is valid and fits within the allotted area. By contrast, the
preceding hash function example involves solutions which can apparently
only be verified by recomputing them all over again. On reflection, easy
verification of solutions is a very natural property to demand of problems
which are targets for AI. Putting solutions of such problems to practical use,
as one can see with the scheduling or optimisation examples, is tantamount
to verifying them, and so easy verifiability is related to being able to use a
solution without the overhead associated with computing it. If we want to
use AI as a tool for building results which can stand on their own, so that
this tool can be taken away and subsequently applied to new tasks, then the
NP complexity class presents itself as a natural target domain.

Yet we are convinced that the average-case time complexity of the NP-
hard class (and its subset, NP-complete) is exponential in the problem size,8

although this has not yet been proven, and the No Free Lunch Theorems
(NFLT)9 tell us that even if we manage to do better than this for certain
problems, such improvement can only be realized at the expense of perfor-
mance on other problems. One might argue that since we cannot improve
the average-case performance of our inference algorithms (only being able
to speed them up by a constant factor or change the base of the exponen-
tial), it follows that programs which attempt to solve such general problems
are bound to be slow, and we should devote our energy to attacking more
specialised problems for which economical solutions may be available.

8R. Impagliazzo and R. Paturi. “Complexity of k-SAT”. In: Computational Complexity,
1999. Proceedings. Fourteenth Annual IEEE Conference on. IEEE. 2002, pp. 237–240.

9D.H. Wolpert and W.G. Macready. No free lunch theorems for search. Tech. rep.
SFI-TR-95-02-010. Santa Fe Institute, 1995; D.H. Wolpert and W.G. Macready. “No free
lunch theorems for optimization”. In: IEEE Transactions on Evolutionary Computation
1.1 (1997), pp. 67–82.
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Since most inference algorithms apply to arbitrary statistical inference
problems, this view has led to a good deal of research which considers prob-
lems and inference algorithms in pairs, intending to show that specific in-
ference techniques (such as BP or Gibbs sampling) apply well to specific
practical problems (such as document classification or change-point detec-
tion).

Perhaps it is only apparent to an external observer that the research pro-
cess thus described - in which humans analyse the complexity of different
inference tasks, perform experiments to identify the best algorithms for solv-
ing them, and then hand the problems over to a computer to be solved using
the appropriate algorithm - could, assuming AI is possible, theoretically be
performed entirely by computer from start to finish.

But this also describes the mechanism by which we might hope an “in-
telligent” inference algorithm would circumvent the NFLT: by dividing the
space of statistical inference problems into subclasses of varying complex-
ity, and solving the simpler subclasses as quickly as their structure allows.
Since there are many more complex problems than simple ones, we can re-
alize such a speed-up by slowing down the solution of complex problems
by a small constant factor (the cost of exploring simpler solutions simul-
taneously). The difference is then credited to the account of the simple
problems, so that the average time-complexity remains unchanged. Such an
approach is taken implicitly by Marcus Hutter’s 2001 paper, “The Fastest
and Shortest Algorithm for All Well-Defined Problems”, which matches the
speed of any algorithm (for which there exists a proof of its correctness and
a time bound) on any problem, to within a factor of 4 + ε plus a (huge) con-
stant needed to budget for searching through the space of possible programs
and correctness proofs. Hutter’s result, although only relevant to theorists,
embodies what we hope to be able to achieve with AI - a procedure that
tackles each problem optimally, but with some overhead (ideally smaller
than in Hutter’s proof of concept) which can be thought of as being devoted
to the analysis of such problems.

In this section and the previous one we have argued that AI should be
approached through a probabilistic framework, and that it should be able
to adapt to problem complexity much as humans are able to do. So far,
the vision of AI that we have advocated does not differ substantially from
an automated version of a typical researcher in Machine Learning, which is
the field that uses statistical inference techniques to draw conclusions about
data. Our point of departure from Machine Learning can be located in the
methods which machine learning advocates for evaluating the appropriate-
ness of an approximate inference algorithm on a given problem. Since ma-

7



Chapter 1. Introduction 1.4. METHODOLOGY OF . . .

chine learning is the primary consumer of approximate inference techniques,
we will first review the methodology behind this body of applications for
contrast, before going on to describe our own philosophy.

1.4 Methodology of machine learning

Machine Learning (ML) is considered here to be a branch of data analy-
sis. It arose together with the relatively recent development of computer
technology and the internet, as a body of techniques for extracting useful
information from the increasingly large and complex structured data-sets
which had become available as a result of such technology. It is used in
fields such as linguistics, computer vision, finance, astronomy, and biology,
as well as in business applications such as search engines and product rec-
ommender systems, where the techniques of early 20th-century statistics,
having been developed for simple or low-dimensional datasets, were not ap-
propriate. The methods of Machine Learning can be classified according to
their philosophy of data modelling:

• Deterministic methods attempt to model data with deterministic,
functional relationships between variables. Parameters defining such
relationships are optimised to reduce a measure of the error of the ap-
proximation, and overfitting is avoided using cross-validation to select
the best model. Approximate inference is used rarely if at all.

• Probabilistic methods view the data as having been produced by a
“generative model”, essentially a stochastic program. Parameters may
be selected to maximise the likelihood of the data, and overfitting can
be avoided by averaging over models of different complexity. Both of
these tasks, as well as that of using the fitted model to characterise
the data or make predictions, employ the methods of (and constitute
the principal applications for) approximate inference.

These are only rough, high-level descriptions of the two main approaches
to ML. In practice, there is much overlap between them. Deterministic
methods may make use of probabilistic techniques like model averaging, and
probabilistic methods may use deterministic techniques like cross-validation.
Since our interest is approximate inference, we will be concerned with the
probabilistic side of the spectrum. In this thesis, we use the term “Machine
Learning” to mean “Probabilistic Machine Learning”.

The central role played by data in ML strongly influences the way that
the field employs statistical inference. In ML, data is used not only to infer

8



Chapter 1. Introduction 1.5. OUR APPROXIMATE . . .

the parameters and occasionally to learn the structure of a model, but also
as a source of samples from “ground truth”. These samples can be used in
conjunction with inference in several ways:

Use of data to validate the inference algorithm Similarly to cross-
validation, a particular choice of approximation can be evaluated against
another by testing their predictions against the data being modelled, to see
which approximation assigns a higher probability to the data. Alternatively,
if the purpose of inference is to enable us to make decisions based on some
input, we can evaluate the accuracy of inference by measuring the quality
of the decisions.

Use of data to signal convergence In the application of sampling al-
gorithms such as MCMC, we can guess when a sampling run has sufficiently
converged by measuring the probability of the data, for instance by sampling
over latent variables and calculating the probability of observed variables in
a data set with each setting, and waiting for the average of this quantity to
stop increasing.

Use of data to replace inference In complex models, we may use data
from an external system which is assumed to do inference well on our model
as a kind of manual replacement for some of the inference we find too dif-
ficult to do ourselves. This is done in some game-playing algorithms, for
instance, where data from experts is used to augment the difficult process of
inference on the game tree. Another example might include physical simu-
lations, where the measured values of some quantities such as melting point
or molecular bond length might be incorporated directly into a simulation
rather than inferring these “from scratch”.

1.5 Our approximate inference philosophy

We have enumerated several ways in which traditional ML methodology
relies on data when applying inference. We can see that these constitute
a kind of “interaction with an external environment”, which was originally
found to be superfluous to our definition of AI. This is not to say that
such interaction is not important - using data in this way forms the basis
of science. Nor do we wish to suggest that AI could not be applied to the
task of reasoning about data which comes from an external source. On the

9
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contrary, we expect that such applications will dominate. The problem we
have with this use of data is that from the perspective of statistical inference,
it forms a kind of crutch, and complicates the task of judging the quality of
our inference algorithms in isolation. A chess player does not have access to
samples of optimal moves, and our “mathematician in a box” has no recourse
to a source of samples of true theorems - other than what has formed his
education, which is assumed to have already taken place. We anticipate
that by avoiding this reliance upon data, we can focus our efforts to build a
better approximate inference algorithm. (Such an algorithm could then be
used, among other things, to facilitate an advancement of the state of the
art in data modelling techniques.)

When we apply approximate inference to problem domains where the
statistical model comes with “real data”, we make it difficult to know how
much of our success to credit to the inference algorithm and how much
to credit to the way in which the data was collected or used, or the way
the model was learned from it. Furthermore, there may be a tendency to
avoid tackling certain difficult problems in approximate inference, such as
the question of how to evaluate the quality of an approximation to a large
model, when our focus is on applications in which “real” data can often be
employed to give case-by-case workarounds.

We now wish to highlight the existence of another continuum of ap-
proximate inference methodologies. On the one extreme, we have situations
where a model is learned from data consisting of i.i.d. samples in which each
of the variables are observed, so that statistical inference in the model can
be validated or augmented using these samples. The application of approxi-
mate inference at this extreme we will call “applied” approximate inference.
Traditional ML, as well as any other application area in which data plays an
important role, falls near this extreme. On the other extreme is our idealised
mathematician, or box of mathematicians, who must perform probabilistic
reasoning in a model which has been fully specified using rules and axioms,
and for which no source of data samples exists. This extreme would also
include applications such as the optimisation of software or electric circuits,
and playing games like chess or backgammon. We refer to applications at
this extreme as “pure” approximate inference. Between these two extremes
of “pure” and “applied” approximate inference, we find applications in which
we only get to observe some subset of a model’s variables, or in which we are
only provided with sufficient statistics such as pairwise correlations. There
may also be applications in which a large model has been learned with the
help of data, but new data points (consisting of the outcomes of financial
or medical experiments, perhaps) are so expensive that we don’t wish to

10
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consume them in validating inference.
Which approximate inference algorithms are best suited to the “pure”

methodology, and which to the “applied”? This is not the most appropriate
question to ask - since it is the applications, and not the algorithms them-
selves, which are described by these categories. Although we grant that it is
correct to associate pure approximate inference with algorithms which are
more autonomous, and applied approximate inference with algorithms that
require problem-specific tuning or analysis, most algorithms have extensions
which can be used in both ways. For example, Belief Propagation is a fairly
general-purpose algorithm, which could therefore be seen as satisfying one of
the goals of autonomy, thus making it “pure”; but it has extensions like Gen-
eralised Belief Propagation and Expectation Propagation whose operation
should be parametrised to suit specific “applied” applications. Similarly,
Gibbs sampling is not only general-purpose but produces arbitrarily accu-
rate approximations over time, in a sense making it even more autonomous
and “pure” than Belief Propagation; but it also has numerous extensions
and optimisations (such as collapsed or blocked samplers) which invite “ap-
plied” problem-specific adaptation. It is hard to draw a clear line between
both sets of algorithms. We can observe, however, that the work of extend-
ing algorithms shows a trend of development towards the more “applied”
settings - which is to be expected.

In summary, although almost all of the contemporary consumers of ap-
proximate inference technology fall into the category of applications which
we have called “applied”, and although we would expect to see such ap-
plications continue to occupy an important place as artificial intelligence
technology advances, we don’t see the “applied” methodology as posing the
most stimulating challenges when it comes to motivating such advancement.
Instead, we focus on “pure” applications of approximate inference - in which
a model is specified exactly, and not learned from data. We have devoted
some space to this discussion because we expect most of our readers to come
from a machine learning background, and to be most accustomed to applied
approximate inference. Such readers may have a tendency to question or
misunderstand our direction and priorities in the pages that follow. By high-
lighting the contrast between our own hypothetical applications and those
of traditional ML, we hope to avoid some of these misunderstandings.

11
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1.6 Our contribution

In this introductory chapter we have advocated studying approximate in-
ference - of the “pure”, data-free variety - as a bite-sized first step on the
way to the bigger goal of AI. This leaves us with the question of how one
should best approach approximate inference. For the most part, the various
contributions of this thesis were developed independently of any one plan
of attack. It was not until afterwards that we found that the various re-
search directions we had pursued could all be unified under the umbrella of
“methods for combining multiple different approximations”. This concept
was then selected as the subject of the dissertation. Although conceived in
hindsight, we should see the study of ways to “combine approximations” as
a simple and natural strategy for making progress on the problem at hand.
Below, we establish this strategy with some simple principles and analogies.

We start by recalling the end goal: some kind of artificial intelligence.
We know that real intelligence can be used for communication and in

fact we already made the argument, based upon our view of AI as an ide-
alised mathematician, that the combination of multiple of these intelligences
(e.g., by putting them together in a hypothetical “box”) should be exter-
nally equivalent to a single one, aside from differences in speed or power.
Furthermore, the mind of an animal is often said to function through the
cooperative action of many different subcomponents; this parallelism is ap-
parent whether we perform physical or electrical measurements on the brain,
or psychological or behavioural experiments on the unconscious. The obser-
vation that intelligence can be composed or decomposed in this way leads
us to hypothesise that perhaps by studying the various forms and functions
to be realised in such compositions, we can understand how new intelligence
should be created.

This is, of course, not such a radical idea. Indeed, after trying to dis-
tance ourselves from the applied methodology of Machine Learning, which
combines approximations with data, we find that we are left with only ap-
proximations and no other type of object - the only thing left to do would
seem to be to search for ways of combining these approximations with each
other. And in fact many or all of the popular approximate inference al-
gorithms in use today can be seen as doing this in one way or another.
The algorithm of Belief Propagation, performed on a tree, combines the
(exact) approximate marginals for a node at each of its isolated subtrees
by multiplying them together as “messages”. Sampling methods combine
together a number of samples, each of which can be seen as a very poor
set of approximate marginals, by averaging. Of course, it is important that
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the samples be generated in an appropriate way (for instance by iterating a
stochastic transition operator which satisfies detailed balance); similarly, in
Belief Propagation it is necessary to multiply together each of the incoming
messages exactly once (though some variations are possible10).

We can perhaps motivate the concept of “combining approximations”
more rigorously by using arguments from complexity theory. The parallelis-
able nature of programs for solving problems in the complexity class NP,
which class we have tried to characterise as being connected to intelligence,
often seems to result in algorithms which work by decomposing a problem
into a number of subproblems and then combining the results. If this is also
the proper form for an effective inference algorithm, and if the subproblems
consist of inference as well, then we expect to find a more or less direct rela-
tionship between approximate inference algorithms and ways of combining
approximations.

For these reasons we chose to devote the subject of this thesis to combin-
ing approximations. In the chapters that follow, we investigate four ques-
tions related to the topic:

• How should we go about partitioning a statistical inference problem
for cooperative solution between multiple approximate inference algo-
rithms? (chapter 3)

• Suppose we are given multiple approximate inference algorithms which
result in divergent beliefs about the same model. Are there methods
that can identify which one is more accurate (without knowing the
true marginals)? (chapter 4)

• Is there a good way for one algorithm to “teach” another about the
interesting aspects of a model, without simply conveying his own (pos-
sibly imperfect) beliefs? (chapter 5)

• Is there a way to “evolve” approximate inference algorithms which pro-
duce more accurate results (again, without knowing the true marginals)?
(chapter 6)

We give a positive answer to each question, together with experimental
results supporting our claims.

10W. Wiegerinck and T. Heskes. “Fractional belief propagation”. In: Advances in Neural
Information Processing Systems 15. MIT Press. 2003, p. 455.
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Chapter 2

Background

In this background chapter we give a more formal definition of approximate
inference in discrete graphical models. We give a broad overview of differ-
ent types of inference algorithms, and describe a few specific algorithms in
detail. We discuss the semantics and generality of discrete factor graphs,
roughly demarcating the broad class of problems which can be converted
into the factor graph form required by our algorithms. We examine some
common restrictions which can be placed on the structure of factor graphs,
and present original results classifying the conditions under which general
factor graphs can be converted into these restrictive forms. Finally, we give
a brief overview of complexity theory and discuss the intractability of exact
and approximate inference.

2.1 Definitions

Bayesian statistical inference, also called probabilistic inference, statistical
inference or just inference, is defined here as the task of computing the
probability distribution of some variable or set of variables in a statistical
model which is defined over a possibly larger set of variables:

P (xs) =

∫
P (x)dx\s =

∑
x\s

P (x) (2.1)

where s is a set of variable indices of interest, xs denotes the vector (xi : i ∈
s), and x\s denotes (xi : i /∈ s), i.e. the set of variables in the model but not
in s. When this value is computed exactly (to within the limits of numeri-
cal precision determined by the computer architecture) we say that “exact
inference” is being done; otherwise it is “approximate inference”. We are
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more concerned with approximate inference because it is more general and
allows us to trade time for accuracy. Both exact inference, and approximate
inference with accuracy bounds, are NP-hard, as discussed in section 2.5,
although approximate inference with no accuracy guarantees can of course
have arbitrary time complexity.

Other problems which are defined as belonging to inference include the
problem of computing expectations of functions under probability distri-
butions, which is also called numerical integration; and MAP (maximum
a posteriori) estimation, or the problem of calculating argmaxx P (x).1 Nu-
merical integration can often be expressed in terms of marginals. MAP is
an occasionally more tractable problem than computation of marginals. We
do not address either of these problems further.

We consider probability distributions defined in the following way:

P (x) =
1

Z

∏
α

ψα(xα) (2.2)

Z =
∑
x

∏
α

ψα(xα) (2.3)

where the values x ≡ (x1 . . . xn) are members of some finite set X ≡ X1 ×
. . . × Xn, α indexes a finite set of subsets of variables, to each of which is
associated a “factor” (also called local function,2 potential or interaction3)
ψα, a non-negative real-valued function

ψα : Xα → R+ (2.4)

Here x is called a “state” of the model, or a “configuration” or an “as-
signment” of the variables. For i ∈ {1 : n} we refer to xi as a “random
variable” or “variable” in the model, but we may also refer to the same
random variable as “variable i” or the value of xi as the “state” or “value”
of variable i; likewise, a factor ψα may be called “the potential function of
factor α”.

We sometimes write F for the set of factors and V (= {1, . . . , n}) for the
set of variables.

1Y. Weiss and W.T. Freeman. “On the optimality of solutions of the max-product
belief-propagation algorithm in arbitrary graphs”. In: Information Theory, IEEE Trans-
actions on 47.2 (2002), pp. 736–744.

2F.R. Kschischang, B.J. Frey, and H.A. Loeliger. “Factor graphs and the sum-product
algorithm”. In: IEEE Transactions on information theory 47.2 (2001), pp. 498–519.

3JM Mooij. “Understanding and improving belief propagation”. PhD thesis. Radboud
Universiteit Nijmegen, 2008.
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A problem formed in this way, i.e. as a set of variables V, factors F ⊆ 2V ,
and functions {ψα : α ∈ F}, is loosely termed a “factor graph”4 which may
also refer to the connectivity graph induced by the factors (potentials). The
latter is a bipartite graph with edges (i, α) for each i ∈ V and α ∈ F
such that i ∈ α. We also write the adjacency relation in this graph as ∼
and regard a variable as the set of factors containing it, so that for instance∏
β∼i\α fβ represents a product over {β ∈ F : i ∈ β∧β 6= α}5. Factor graphs

are often drawn with variables represented as hollow circles and factors
represented as black squares (factors containing only two variables may also
be drawn as just an edge between the variables). Here is a depiction of part
of a factor graph, with a variable i and factor α which neighbour each other,
and which each have two other neighbours:

. . .

..
.

. . .

...

. . .

..
.

. . .

...

iα
(2.5)

The probability of an element x of X , i.e. P (x), is called the “joint” probabil-
ity; the probability of some subset xr ∈

∏
k∈r Xk, written P (xr), and equal

to
∑

x\r
P (x), is called a “marginal” probability. The conditional probabil-

ity P (x|y) = P (xy)
P (y) is called the “probability of x given y” or the “likelihood

of y given x”. When we update our beliefs about x after seeing some data
y, we call P (x) the prior, P (y|x) the likelihood, and P (x|y) = P (x)P (y|x)

P (y) the
posterior. The last equation is called Bayes’ Rule. We sometimes write 1 : k
for the vector (1, 2, . . . , k) and x1:k for the vector (x1, . . . , xk).

When the arguments of a function of a model’s variables can be under-
stood from context, these are sometimes omitted. In such cases, variables
of summation are indicated with capital letters, so in equation 2.10 below,
instead of

Zi(xi) ≡
∑
x\i

∏
α

ψα(xα) (2.6)

4Kschischang, Frey, and Loeliger, “Factor graphs and the sum-product algorithm”, op.
cit.

5Here and in the rest of this thesis, ∧ means “and” and ∨ means “or”.

16



Chapter 2. Background 2.2. SOME CLASSES OF . . .

we could have written
Zi ≡

∑
X\i

∏
α

ψα (2.7)

2.2 Some classes of inference algorithms

Statistical inference algorithms can be broadly divided into two classes: de-
terministic, and stochastic. Deterministic algorithms include algorithms
for exact inference such as junction tree,6 cutset conditioning7 and join-
tree propagation,8 as well as those for approximate inference such as Belief
Propagation (BP),9 Generalised Belief Propagation (GBP),10 Mean Field
(MF),11 Expectation Propagation (EP)12 and the Expectation Consistent

6F.V. Jensen, K.G. Olesen, and S.K. Andersen. “An algebra of Bayesian belief universes
for knowledge-based systems”. In: Networks 20.5 (1990).

7J. Pearl. “Fusion, propagation, and structuring in belief networks”. In: Artificial in-
telligence 29.3 (1986), pp. 241–288.

8S.L. Lauritzen and D.J. Spiegelhalter. “Local computations with probabilities on
graphical structures and their application to expert systems”. In: Journal of the Royal
Statistical Society. Series B (Methodological) (1988), pp. 157–224.

9J. Pearl. “Reverend Bayes on inference engines: A distributed hierarchical approach”.
In: Proceedings of the AAAI National Conference on AI. 1982, pp. 133–136; RG Gallager.
Low Density Parity Check Codes. Number 21 in Research monograph series. 1963; K.
Nakanishi. “Two- and three-spin cluster theory of spin-glasses”. In: Physical Review B 23.7
(1981), pp. 3514–3522; H.A. Bethe. “Statistical Theory of Superlattices”. In: Proceedings
of the Royal Society of London. Series A, Mathematical and Physical Sciences 150.871
(1935), pp. 552–575; R. Peierls. “On Ising’s model of ferromagnetism”. In: Mathematical
Proceedings of the Cambridge Philosophical Society. Vol. 32. 03. Cambridge University
Press. 1936, pp. 477–481.

10J.S. Yedidia, W.T. Freeman, and Y. Weiss. “Generalized belief propagation”. In: Ad-
vances in Neural Information Processing Systems 13 (2001), pp. 689–695.

11M. Mézard and G. Parisi. “Mean-field equations for the matching and the travelling
salesman problems”. In: EPL (Europhysics Letters) 2 (1986), p. 913; M. Mézard and G.
Parisi. “Mean-field theory of randomly frustrated systems with finite connectivity”. In:
EPL (Europhysics Letters) 3 (1987), p. 1067; C. Peterson and J.R. Anderson. “A mean field
theory learning algorithm for neural networks”. In: Complex systems 1.5 (1987), pp. 995–
1019; M.I. Jordan et al. “An introduction to variational methods for graphical models”.
In: Machine learning 37.2 (1999), pp. 183–233; J. Winn and C.M. Bishop. “Variational
message passing”. In: Journal of Machine Learning Research 6.1 (2006), p. 661.

12T.P. Minka. “Expectation propagation for approximate Bayesian inference”. In: Un-
certainty in Artificial Intelligence. Vol. 17. 2001, pp. 362–369; M. Welling, T. Minka, and
Y.W. Teh. “Structured region graphs: Morphing EP into GBP”. In: Proceedings of the
21st Annual Conference on Uncertainty in Artificial Intelligence. 2005, pp. 609–616.
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(EC) approximation,13 Loop Corrected Belief Propagation (LCBP),14 Tree-
EP,15 Tree Reweighted Belief Propagation (TRW-BP),16 Fractional BP (FBP),17

Conditioned BP,18 and convergent double-loop algorithms such as the Con-
vex Concave Procedure (CCCP)19 and the algorithm of Heskes, Albers, and
Kappen (HAK).20 Many deterministic algorithms are based on “message
passing”, in which quantities called messages are assigned to nodes or edges
of a graph and updated as a function of neighbouring messages. Stochastic
(or “sampling”) algorithms are always approximate and operate by endeav-
ouring to draw samples from the distribution of interest, and using these
samples to answer queries, for instance to compute marginal estimates (by
counting the number of samples in which a variable takes each of its values).

Stochastic algorithms may be further divided into two classes: exact
sampling algorithms, which attempt to draw uncorrelated (exact) samples
directly from the desired distribution, e.g. “coupling from the past”21 or
“systematic stochastic search”22 or sampling from a causal network;23 and
Markov Chain Monte Carlo algorithms,24 which draw correlated samples

13M. Opper and O. Winther. “Expectation consistent approximate inference”. In: The
Journal of Machine Learning Research 6 (2005), pp. 2177–2204; T. Heskes et al. “Ap-
proximate inference techniques with expectation constraints”. In: Journal of Statistical
Mechanics: Theory and Experiment 2005 (2005), P11015.

14J.M. Mooij et al. “Loop corrected belief propagation”. In: Proceedings of the Eleventh
International Conference on Artificial Intelligence and Statistics. 2007.

15T. Minka and Y. Qi. “Tree-structured approximations by expectation propagation”.
In: Advances in Neural Information Processing Systems 16. 2004, p. 193.

16Martin Wainwright, Tommi Jaakkola, and Alan Willsky. “A New Class of Upper
Bounds on the Log Partition Function”. In: Proceedings of the Eighteenth Conference
Annual Conference on Uncertainty in Artificial Intelligence (UAI-02). 2002, pp. 536–54.

17Wiegerinck and Heskes, “Fractional belief propagation”, op. cit.
18F. Eaton and Z. Ghahramani. “Choosing a variable to clamp: approximate inference

using conditioned belief propagation”. In: Proceedings of the Twelfth International Con-
ference on Artificial Intelligence and Statistics. Vol. 5. 2009, pp. 145–152.

19A.L. Yuille and A. Rangarajan. “The concave-convex procedure”. In: Neural Compu-
tation 15.4 (2003), pp. 915–936.

20Tom Heskes. “Convexity arguments for efficient minimization of the Bethe and Kikuchi
free energies”. In: Journal of Artificial Intelligence Research 26 (2006), pp. 153–190.

21J.G. Propp and D.B. Wilson. “Exact sampling with coupled Markov chains and ap-
plications to statistical mechanics”. In: Random structures and Algorithms 9.1-2 (1996),
pp. 223–252.

22V. Mansinghka et al. “Exact and Approximate Sampling by Systematic Stochastic
Search”. In: 5 (2009).

23J. Pearl. “Evidential reasoning using stochastic simulation of causal models”. In: Ar-
tificial Intelligence 32.2 (1987), pp. 245–257.

24N. Meteopolis and S. Ulam. “The monte carlo method”. In: Journal of the Ameri-
can Statistical Association 44.247 (1949), pp. 335–341; A.E. Gelfand and A.F.M. Smith.
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that only converge to the desired distribution in the infinite limit. When
using MCMC algorithms, one must concern oneself with the question of
estimating when a particular algorithm has converged “sufficiently” to be
producing useful samples. However, MCMC algorithms can be much faster
than exact sampling algorithms and are among the most practical approx-
imate inference algorithms. They include Gibbs sampling,25 importance
sampling (e.g.26), rejection sampling,27 Metropolis,28 Hybrid Monte-Carlo,29

Tempered MCMC,30 combinations of these, and so on. Stochastic algo-
rithms from these two main classes all have the property that error decreases
proportionally to 1/

√
n where n is the number of samples (because if the

variance of one sample is σ2, then the variance of a sum of n uncorrelated
samples is nσ2, the standard deviation is

√
nσ, and the standard deviation of

the average is σ√
n

; this argument also generalises to the case where samples

are correlated).

2.3 Some inference algorithms

To provide a more concrete image of modern inference algorithms we de-
scribe some elementary examples from the two main classes: deterministic
(below), and stochastic (section 2.3.2).

2.3.1 BP and GBP

We give a brief definition of Belief Propagation (BP), arguably the simplest
message-passing algorithm for approximate inference, as well as Generalised

“Sampling-Based Approaches to Calculating Marginal Densities”. In: Journal of the Amer-
ican Statistical Association 85.410 (1990), pp. 398–409.

25S. Geman and D. Geman. “Stochastic relaxation, Gibbs distributions, and the
Bayesian restoration of images”. In: IEEE transactions on pattern analysis and machine
intelligence 6.6 (1984), pp. 721–741.

26J. Geweke. “Bayesian Inference in Econometric Models Using Monte Carlo Integra-
tion”. In: Econometrica 57.6 (1989), p. 1317.

27J. Von Neumann. “Various techniques used in connection with random digits”. In:
Applied Math Series 12.36-38 (1951), p. 1.

28N. Metropolis et al. “Equation of state calculations by fast computing machines”. In:
The journal of chemical physics 21.6 (1953), p. 1087; W.K. Hastings. “Monte Carlo sam-
pling methods using Markov chains and their applications”. In: Biometrika 57.1 (1970),
p. 97.

29AD Duane et al. “Hybrid monte carlo”. In: Physics letters B 195.2 (1987), pp. 216–
222.

30K. Kimura, K. Taki, and S.S.K.G.K. Kikō. Time-homogeneous parallel annealing al-
gorithm. Institute for New Generation Computer Technology, 1991.
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Belief Propagation (GBP) which is used in chapters 4 and 6.
Belief propagation, also known as the sum-product algorithm, is related

to the Bethe approximation31 which was developed in statistical physics.
BP was first used as an inference algorithm by Gallager in an application
to error correcting codes.32 Its application to exact statistical inference on
trees33 was first recognised by Pearl34 who also advocated the use of BP in
“loopy” graphs for approximate inference.35 The latter application of BP is
sometimes called “Loopy BP”, but we also refer to it as just “BP”.

BP is the basis for a number of other algorithms, both exact and approx-
imate. Approximate extensions of BP include Generalised Belief Propaga-
tion36 (which can be used for the Cluster Variation Method37), Expectation
Propagation,38 and Loop Corrected Belief Propagation.39 A simple exact
extension of BP is called Cutset Conditioning,40 which is based on the idea
of turning a complex graphical model into a simpler one by conditioning
on a set of variables. This “conditioning” approach to inference is further

31Bethe, “Statistical Theory of Superlattices”, op. cit.; J.S. Yedidia, W.T. Freeman, and
Y. Weiss. “Bethe free energy, Kikuchi approximations and belief propagation algorithms”.
In: Advances in Neural Information Processing Systems 12 13 (2000).

32Gallager, Low Density Parity Check Codes. Number 21 in Research monograph series,
op. cit.

33Pearl’s original algorithm applied to singly-connected (tree-structured) Bayesian net-
works in which each variable has only a single parent, sometimes called simply “trees”. BP
is more easily derived from a simple generalisation of this algorithm due to Jin Kim, which
applies to polytrees, which are singly-connected Bayesian networks in which some variables
may have multiple parents (J.H. Kim and J. Pearl. “A computational model for causal and
diagnostic reasoning in inference systems”. In: Proceedings of the 8th International Joint
Conference on Artificial Intelligence. 1983, pp. 190–193; J. Pearl. “Fusion, propagation,
and structuring in belief networks”. In: Artificial intelligence 29.3 (1986), pp. 241–288;
A. Darwiche. “Inference in Bayesian Networks: A Historical Perspective”. In: Heuristics,
Probability and Causality. A Tribute to Judea Pearl. College Publications,).

34Pearl, “Reverend Bayes on inference engines: A distributed hierarchical approach”,
op. cit.

35J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Infer-
ence. Morgan Kaufmann, 1988, p. 195.

36Yedidia, Freeman, and Weiss, “Generalized belief propagation”, op. cit.
37R. Kikuchi. “A Theory of Cooperative Phenomena”. In: Physical Review 81.6 (1951),

pp. 988–1003; A. Pelizzola. “Cluster variation method in statistical physics and proba-
bilistic graphical models”. In: J. Phys. A: Math. Gen 38 (2005), R309–R339.

38T.P. Minka. “Expectation propagation for approximate Bayesian inference”. In: Pro-
ceedings of the 17th Annual Conference on Uncertainty in Artificial Intelligence. Vol. 17.
2001, pp. 362–369.

39Mooij et al., “Loop corrected belief propagation”, op. cit.
40Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference,

op. cit.
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explored in chapter 3.
We can derive the BP message updates by considering the problem of

statistical inference in tree-structured graphical models. By writing infer-
ence in a subtree in terms of sub-subtrees, we can express the marginal of a
variable in terms of recursively-defined quantities which we call “messages”,
which leads to a dynamic programming style algorithm. These updates can
then be applied to loopy graphs without modification, although the resulting
marginals will no longer be guaranteed to be exact.

Imagine that the following factor graph is a tree. Define Rαi to be the
set of variables contained in the unique subtree which is rooted at i and
contains the factor α (but no other factors neighbouring i).

. . .

..
.

. . .

...

. . .

..
.

. . .

...

iα

Rαi

(2.8)

We would like to know the entries of the marginal distribution of xi:

P (xi) =
Zi(xi)

Z =
∑

xi
Zi(xi)

(2.9)

where
Zi(xi) ≡

∑
x\i

∏
α

ψα(xα) (2.10)

Because of the tree structure, Zi(xi) is actually a product of summations
over independent sets of variables. We can make this explicit using the
subtree region definitions Rαi:

Zi(xi) =
∏
γ∼i

mγi(xi) ≡
∑
xRγi\i

∏
δ∈Rγi

ψδ(xδ)

 (2.11)

where we have introduced the new “message” quantities mαi(xi) defined for
every variable i and neighbouring factor α ∼ i. But we can rewrite these
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quantities using messages from the neighbours of the neighbours of i:

mαi(xi) =
∑
xRαi\i

∏
β∈Rαi

ψβ(xβ) (2.12)

=
∑
xα\i

ψα(xα)
∏
j∼α

∏
β∼j\α

 ∑
xRβj\j

∏
γ∈Rβj

ψγ(xγ) = mβi(xi)

 (2.13)

Thus the messages can be computed, for all α and i ∼ α, as:

mαi =
∑
Xα\i

ψα
∏
j∼α

∏
β∼j\α

mβi (2.14)

(here we have used the more concise notation from the end of section 2.1,
which omits arguments of functions of the state x)

These are the BP message updates. When the underlying graph is a tree,
no recursive dependencies are implied in these equations, and the “messages”
can be computed with two passes over all the variables. Equations 2.15 and
2.16 can be used to calculate the true marginals. On a loopy graph, the
updates can be made “destructive” - messages are initialised (say, to uniform
values), and each update computes a new value with which to replace the
old, repeating until convergence. Also, on a loopy graph, the normalisation
of the messages no longer has a meaning in terms of Zi, and the messages
must be renormalised after each update in order to preserve stability. The
marginals calculated on a loopy graph will be approximate, but are often
close to the true marginals.

Note that the marginal distribution or “beliefs” bi or bα over one or more
variables can be computed (exactly in the case of a tree) by multiplying the
factors in that region by all the “incoming” messages. For single node beliefs
bi(xi) and factor beliefs bα(xα) this gives

bi(xi) ∝
∏
α∼i

mαi(xi) (2.15)

bα(xα) ∝ ψα(xα)
∏
i∼α

∏
β∼i\α

mβi(xi) (2.16)

There are other ways of writing the messages. Sometimes a “dual form”,
which emphasises a kind of duality between variables and factors, is given
as in section 3.3.2.
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From equations 2.15 and 2.16 we can see that the message updates are
equivalent to

mαi(xi)←

∑
xα\i

bα(xα)

bi(xi)
mαi(xi) (2.17)

Note that the mαi appearing explicitly in the right-hand side cancels with
the factor appearing implicitly in the calculation of the denominator bi,
so that the right-hand side has no functional dependence on mαi, and the
update takes the form of a projection. (A view of message passing in terms of
projections is explored by Minka (2005),41 which unifies EP, FBP, TRW-BP,
and MF.)

This form gives an easy derivation of the GBP parent-child updates
(other message definitions and updates are possible, see Yedidia et al 200542)
which we now describe. A GBP algorithm is parametrised by a set of user-
defined regions R. Each region comprises a set of variables. R is closed
under intersection. For r, s ∈ R, introduce the relationship s . r which
means “s is a direct subregion of r”, i.e. s ⊂ r and there is no t ∈ R
such that s ⊂ t ⊂ r. For each s . r, a message mrs(xs) is defined. The
parent-child message updates can be written in analogy to 2.17:

mrs ←

∑
Xr\s

br

bs
mrs (2.18)

where the b’s should be expanded as:

br ≡

∏
α⊆r

ψα

( ∏
r′∩r=s

mr′s

)
(2.19)

As above, the right-hand side of the update does not depend on mrs and so
the update is a projection. By expanding and then cancelling like terms, it
can also be written

mrs ←

∑
Xr\s

(∏
α⊆r
α*s

ψα

)∏
r′∩r=s′
s′*s

mr′s′∏
r′(r

r′∩s=s′
mr′s′

(2.20)

41T. Minka. “Divergence measures and message passing”. In: Microsoft Research, Cam-
bridge, UK, Tech. Rep. MSR-TR-2005-173 (2005).

42JS Yedidia, WT Freeman, and Y. Weiss. “Constructing free-energy approximations
and generalized belief propagation algorithms”. In: IEEE Transactions on Information
Theory 51.7 (2005), pp. 2282–2312.
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which corresponds to equation 7 in Yedidia et al 2001.43

The stable fixed points of loopy belief propagation updates correspond
to local minima of the “Bethe Free Energy”:44

FBethe(b;ψ) ≡
∑
α

∑
xα

bα(xα) log
bα(xα)

ψα(xα)
+
∑
i

(1− |i|)
∑
xi

bi(xi) log bi(xi)

(2.21)
Similarly, GBP finds local minima of the “Kikuchi free energy”:

FKikuchi(b;ψ) ≡
∑
r

cr
∑
Xr

br log
br
ϕr

(2.22)

where ϕr ≡
∏
α∈r ψα and the “overcounting numbers” cr are defined as

cr = 1−
∑
t⊃r

ct (2.23)

Sometimes, Loopy BP or GBP updates fail to converge. This problem is
worsened in models with strong factors.45 It can be ameliorated with damp-
ing; however, it is not the case that every local minimum of FBethe or FKikuchi

corresponds to a stable fixed point of the BP or GBP message updates, and
in cases where it does not, damping will not help.46 However, there are algo-
rithms which are stable at all local minima of these free energies, which are
based on a kind of coordinate ascent between two convex functions47 and
can also be seen as bounding the free energy and optimising this bound.48

These are called “double-loop” algorithms because they consist of an inner
loop and an outer loop, both of which are run to convergence. They tend to

43Yedidia, Freeman, and Weiss, “Generalized belief propagation”, op. cit.
44T. Heskes. “Stable fixed points of loopy belief propagation are minima of the Bethe

free energy”. In: Advances in Neural Information Processing Systems 15. MIT Press. 2003,
p. 359.

45JM Mooij and HJ Kappen. “On the properties of the Bethe approximation and loopy
belief propagation on binary networks”. In: Journal of Statistical Mechanics: Theory and
Experiment 2005 (2005), P11012.

46Heskes, “Stable fixed points of loopy belief propagation are minima of the Bethe free
energy”, op. cit.

47A. L. Yuille and A. Rangarajan. “The Concave-Convex Procedure (CCCP)”. In: Ad-
vances in Neural Information Processing Systems 14. Cambridge, MA: MIT Press, 2002,
pp. 1033–1040.

48T. Heskes, K. Albers, and B. Kappen. “Approximate inference and constrained op-
timization”. In: Proceedings of the 19th Annual Conference on Uncertainty in Artificial
Intelligence. Vol. 13. 2003, pp. 313–320; Heskes, “Stable fixed points of loopy belief prop-
agation are minima of the Bethe free energy”, op. cit.
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be much slower than BP or GBP, but we use the HAK version49 of this idea
in our experiments with GBP because its convergence properties are more
important to us than speed.

2.3.2 Gibbs sampling

The simplest MCMC method is Gibbs sampling. Each sample consists of
a state, or complete assignment of all of a model’s variables, x = x∗. Each
Gibbs update consists of resampling one variable from its distribution con-
ditional on its neighbours,

xi ← P (xi|x∗\i) (2.24)

which distribution can easily be calculated from the model’s local factorisa-
tion:

P (xi|x∗\i) ∝
∏
α∼i

ψα(xi, x
∗
α\i) (2.25)

A new sample is typically formed by updating all the variables in this way,
following some predefined order of the variables (although variants are pos-
sible). It is easy to check that each update satisfies detailed balance, and
that the sequence of updates is positive recurrent (see Neal50 for definitions
of these terms) and this implies that the samples will converge to draws
from the true distribution P in the infinite limit.

2.4 Generality of factor graphs

We motivate our decision to express our statistical models using discrete
factor graphs rather than an alternative formalism. Below, we consider other
graphical representations with richer independence structure. In section
2.4.2, we explain why we prefer models with discrete rather than continuous
variables. In section 2.4.3, we discuss several restrictions that are often
placed on factor graph structure and dimensionality, and we prove some
original results characterising the universality of these restricted classes.

49Heskes, Albers, and Kappen, “Approximate inference and constrained optimization”,
op. cit.

50R.M. Neal and University of Toronto. Department of Computer Science. Probabilistic
inference using Markov chain Monte Carlo methods. 1993.
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2.4.1 Independence structure

Statistical models are often specified by decomposing or factoring the (pos-
sibly unnormalised) joint distribution P (x1:n) into a product of functions
of subsets of variables, as in equation 2.2. Such a decomposition is called
a (probabilistic) graphical model. A factor graph, defined above, is a very
general kind of graphical model, but in many cases a model will be given in
terms of a factorisation which contains more structure than a simple factor
graph. For instance, we define a Bayesian causal network, also called a causal
network, or influence diagram, or belief network, as specifying a statistical
model in terms of a procedure for sampling from the model’s distribution:

P (x) =
∏
i

P (xi|x&i) (2.26)

where x&i indicates the set of parents of xi (not ancestors) in a directed
acyclic graph with all the variables as vertices.51 The graph is acyclic, so we
can find a total ordering consistent with it. Sampling variables one at a time
according to such a total order is straightforward because the conditional
distribution for xi is given in terms of the parents x&i whose values will
already have been fixed when it is time to sample xi. The name “causal
network” comes from the existence of this natural sampling procedure, which
may be a representation of a similar “causal” procedure in the “real-world”
system that is being modelled.

But a causal network is less general than a factor graph because, aside
from the fact that it yields a distribution which is already normalised, each
factor also obeys its own normalisation rule:∑

xi

P (xi|x&i) = 1 (∀ x&i ∈ X&i) (2.27)

Thus, the factors in a causal network enjoy additional structure. Such struc-
ture is commonly characterised in terms of its effect on the sets of indepen-
dencies satisfied by variables in the model. Given three sets of variable
indices, U , V , and W , we say that xU is independent from xV given xW , or

xU ⊥⊥ xV |xW (2.28)

when

P (xU , xV |xW ) = P (xU |xW )P (xV |xW ) ∀xW (2.29)

51J. Pearl. Causality: models, reasoning, and inference. Cambridge University Press,
2000.
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In a factor graph, such a relation holds (for arbitrary factors) when all paths
between a variable in U and a variable in V in the connectivity graph contain
a variable in W . In a causal network, the conditional independence rules
are more complicated. For instance, here are three network structures and
some of the conditional independencies satisfied by them:

XA B

Y

XA B

XA B

A ⊥⊥ B
A /⊥⊥B |X
A /⊥⊥B | Y

A /⊥⊥B
A ⊥⊥ B |X

(2.30)

The general rule is given by the “d-separation criterion”,52 whose cases are
summarised by the above examples.

Causal networks are very general, and some important inference algo-
rithms, such as BP,53 were first defined on causal networks. It could be ar-
gued that since almost all real-world probabilistic systems are characterised
by a procedure for drawing samples, and since a causal network can be used
to define such a procedure, so all statistical inference algorithms should be
defined in terms of causal networks.

We outline two reasons for not adopting such a convention. The first
reason is that specifying certain models depends on the greater generality
of factor graphs. For example, factor graphs are closed under the operation
of “marginalising out” (summing over) a variable, but causal networks are
not. Marginalising out A in the network B ← A → C ← D results in a
graph with three variables whose independence relations are not consistent
with any causal network. Instead, it is an example of an acyclically directed
mixed graph, a generalisation of a causal network, with its own independence
rules.54

52Ibid.
53Idem, “Reverend Bayes on inference engines: A distributed hierarchical approach”,

op. cit.
54T. Richardson. “Markov properties for acyclic directed mixed graphs”. In: Scandi-

navian Journal of Statistics 30.1 (2003), pp. 145–157; T.S. Richardson. “A factorization
criterion for acyclic directed mixed graphs”. In: Proceedings of the Twenty-Fifth Confer-
ence on Uncertainty in Artificial Intelligence. AUAI Press. 2009, pp. 462–470.
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Thus, when not every variable in the model can be easily characterised or
enumerated, but rather some unspecified variables should be considered as
having been marginalised out of the model, the causal network framework
is not sufficient. Another example is the Ising model which models the
distribution over spins in a magnetic solid:

P (s) ∝ exp
1

T

J∑
i∼j

sisj + h
∑
i

si

 (2.31)

where si ∈ ±1. Here, J defines the strength of interactions between spins,
h is the strength of an external field, T the temperature, and ∼ defines
an adjacency relation (usually representing adjacency on a two-dimensional
grid). We could argue that the distribution indeed possesses a sampling pro-
cedure, like a causal network: pick a random spin, set it to a draw from its
distribution conditional on its neighbours, and repeat forever (as in Gibbs
sampling). But the resulting causal network has a node corresponding to
each spin at every instant of time, and the final distribution of interest ap-
pears only at infinite depth in the network, in the limit where the spins have
reached equilibrium. On the other hand, it is straightforward to represent
the Ising model in a finite form as a product of factors (by distributing the
“exp” across the sum).

The second reason for using factor graphs is that many algorithms which
have been specially defined for causal networks are straightforward to gener-
alise to factor graphs. There are some exceptions, two of which are described
in section 3.2, but we do not find these inspiring. It is relatively more com-
mon for recent work on approximate inference algorithms to be expressed
in terms of factor graphs. Perhaps it is a shortcoming of our algorithms
that they are not able to leverage the additional information encoded in the
causal network structure, but for the ideas considered in this dissertation,
factor graphs were sufficient.

2.4.2 Discreteness

We have chosen to consider only discrete factor graphs, i.e. those whose
variables take values in a finite domain (this is a slight abuse of the term
“discrete”, which traditionally might also include countably infinite domains
such as the integers). This is a real restriction, since many useful models
contain continuous-valued variables. As in the previous section, there are
two main reasons for adopting such a restriction. One reason is that it is
sometimes feasible to discretise continuous models by partitioning the state
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space of each variable. A second reason is that it is often straightforward
to generalise algorithms which have been defined on discrete variables to
the continuous setting. For instance BP and MF can be generalised to
EP, which applies to models with continuous variables. There are natural
ways to generalise the algorithms presented in this dissertation to apply to
continuous models, but working through such a generalisation does not seem
instructive or useful at this point.

Working with continuous-valued variables results in additional complex-
ity which comes from deciding on a parametrisation for continuous distribu-
tions (Gaussian, mixture of Gaussian), calculating projections to this para-
metric family, deciding how to generate example models, how to report error
in marginals, and how to optimise and schedule simulations on a potentially
much larger number of dimensions. Interesting instances where subclasses of
continuous models are simple and tractable, such as Gaussian Belief Prop-
agation,55 exist, but the properties of such special cases do not seem to
generalise to broader classes of models. For the general case there is an
overhead to using continuous variables and at least at first glance it seems
potentially more productive to concentrate on inference tasks in models with
many variables, each taking values in a small domain, than tasks on models
with a few variables taking values in a large or continuous domain.

The case of continuous-valued variables is only one of many generali-
sations which we could consider here but choose not to. Non-parametric
Bayesian models deal with processes on various unbounded domains, which
could correspond to factor graphs with a countably infinite (Beta process) or
uncountably infinite (Gaussian process) number of continuous-valued vari-
ables. Non-parametric models will no doubt yield interesting connections to
approximate inference, but at the present it seems better to concentrate on
the discrete finite case, since we aren’t specifically concerned with inference
in such models here.

2.4.3 Converting between classes of discrete factor graphs

In this section we will consider ways of reducing the problem of inference
in general discrete factor graphs to that of inference in restricted classes
of discrete factor graphs. For us, this means converting the general input
problem into the simpler framework, in such a way that the marginals of
the converted graph bear a tractable correspondence to those of the orig-
inal graph. This is similar to the idea of reductions in complexity theory,

55Y. Weiss and W.T. Freeman. “Correctness of belief propagation in Gaussian graphical
models of arbitrary topology”. In: Neural computation 13.10 (2001), pp. 2173–2200.
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discussed in section 2.5. Such reductions are of interest because there are
many inference algorithms, decompositions, and other results which apply
only to restricted classes of factor graphs. In the subsections that follow,
we discuss conversions of general discrete factor graphs to pairwise, binary,
binary pairwise, and planar binary pairwise form. With the exception of the
first conversion, the results we present are original and we are not aware of
prior publication. We mention the results here in this background chapter
because they answer important basic questions about the generality of the
models we consider. We describe them in detail because, although not di-
rectly relevant to the rest of this dissertation, most of them are not described
elsewhere and so cannot be abstracted.

We start by defining a “partial assignment” (PA) as an assignment of
values to a subset of a model’s variables. We use a notion of “representation”
of a model G by a model H which can be defined as an injective correspon-
dence f between PAs in G and PAs in H, which preserves probabilities and
containments: for r, s ⊆ V and given f(xr = x∗r) = (ys = y∗s) we have

PG(xr = x∗r) = PH(ys = y∗s) (2.32)

and if additionally r′, s′ ⊆ V with r ⊆ r′ and f(xr′ = x∗r′) = (ys′ = y∗s′) and
(x∗r′)r = x∗r then we have

s ⊆ s′ (2.33)

and

(y∗s′)s = y∗s (2.34)

This relates to a kind of event algebra, and perhaps it is possible to generalise
or weaken the above definition or say more about its formal properties, but
the present form suffices for the material below. It should be clear that such
a correspondence satisfies the primary desiderata, namely that it is easy to
compute marginals in G from those in H, which implies that inference in G
can be accomplished via inference in H. Normally we will only be interested
in cases where a correspondence can be constructed in polynomial time in
the size of the model, and this should be understood implicitly when we
claim that one type of factor graph can be converted into another type of
factor graph in the following sections.

As a special case, the notion of representation of G by H includes situa-
tions where the variables of G are included in H, but H has extra “latent”
variables which need to be “marginalised out”. The pairwise conversion
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defined in Yedidia 2003, for example, conforms to our definition of represen-
tation because the variables in the new graph are a superset of the variable
of the original graph, and the lifted containment relation suffices for the
injective correspondence f .56

The requirement that the PA map f must be containment-preserving
implies that for any r ⊆ V, we have f(xr = x∗r) =

⋂
i∈r f(xi = x∗i ), in other

words the value of f at a particular PA can be found by intersecting the
values of f at each variable in the PA.

If we had allowed our PA maps to be multi-valued, so that a PA in G
could map under f to a union of PAs in H, then the expression f(xr =
x∗r) =

⋂
i∈r f(xi = x∗i ) would expand to a union of a number of PAs which is

exponential in the size of r. As a result, calculating the probability of xr = x∗r
in G would correspond to adding up the probabilities of an exponential
number of PAs in H. This would be at odds with our interest in polynomial-
time conversions between graphs.57

2.4.3.1 Pairwise factor graphs

A common restriction imposed on factor graphs is to require all factors to
have size 2; or size 1 or 2. Since singleton (size 1) factors can be incorporated
into pairwise (size 2) factors (provided that there are no isolated variables),
we consider both cases as roughly equivalent and refer to graphs which
satisfy either restriction as “pairwise” factor graphs. Arbitrary (n-wise)
factor graphs can be converted into pairwise form. The following theorem
was outlined in Yedidia 2003 in a slightly different form:

Theorem 1. Any factor graph can be converted to the form of a pairwise
factor graph

Proof. One way to effect this conversion is to create a variable (i or (α)) for
each variable (i) and factor (α) in the old graph, introduce singleton factors
{(α)} for each α and pairwise factors {i, (α)} for each i ∼ α, and assign to

56J.S. Yedidia, W.T. Freeman, and Y. Weiss. “Understanding belief propagation and
its generalizations”. In: Exploring Artificial Intelligence in the New Millennium (2003),
pp. 239–236, p. 13.

57The drawback of not allowing multi-valued PA maps is that our conversions may not
be invertible. Consider the conversion of Theorem 5: one assignment of a binary variable
in the range can correspond to multiple values in the domain.
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these factors the following potentials:

ψ̂{i,(α)}(x̂i, x̂(α)) =

{
1 if x̂i = [x̂(α)]i
0 otherwise

(2.35)

ψ̂{(α)}(x̂(α)) = ψα([x̂(α)]) (2.36)

where the domains are X̂i = Xi and X̂(α) = (Xα). Here [ ] is used as a kind of
inverse of ( ), so xα = [x̂(α)] indicates the set of variable assignments xα (in
the old graph) corresponding to the single variable assignment x̂(α) = (xα)
(in the new graph).

The new pairwise potentials are constructed to enforce consistency be-
tween the representatives of the old variables and copies of them appearing
in representatives of the old factors by assigning zero weight to illegal states,
and the new singleton potentials incorporate the values of the old factors to
ensure that the legal states have the same weight as in the original graph.
The transformation is illustrated in the following diagram:

. . .

..
.

. . .

...

. . .

..
.

. . .

...

iα

. . .

..
.

. . .

...

. . .

..
.

. . .

...

i(α)

{(α)}

{i, (α)}
(2.37)

It is straightforward to check that, for the above construction, Belief
Propagation on the converted pairwise graph is equivalent to BP on the
original graph. MF, interestingly, does not carry over. (None of the other
transformations we describe share this property of preserving BP fixpoints.)

2.4.3.2 Binary pairwise factor graphs

The next restriction we consider is to require all variable domains to have
size two. Factor graphs satisfying this restriction are called “binary”. This
restriction is usually combined with the first, resulting in “binary pairwise”
factor graphs. Several algorithms and decompositions have been proposed
which only apply to binary pairwise graphs, such as Belief Optimization;58

58M. Welling and Y.W. Teh. “Belief optimization for binary networks: A stable alter-
native to loopy belief propagation”. In: Uncertainty in Artificial Intelligence (2001).
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the self-avoiding-walk (SAW) tree expansion59 and loop decompositions,60

so it is interesting to ask if it is possible to convert more general factor
graphs to the binary pairwise form. Typically, such a conversion would
operate by first converting the input to binary form, by choosing a binary
representation for the input variables, and then adding auxiliary (latent)
variables to implement the correct distribution over the new binary graph.
We show that the second step is not possible in general:

Theorem 2. There exist factor graphs which cannot be converted to binary
pairwise form

Proof. This is because the positive states of a binary pairwise factor graph
correspond to solutions of 2-SAT, which obey a special median graph struc-
ture.

2-SAT is a special case of k-SAT, the problem of finding satisfying as-
signments to boolean formulae of the form

∧
c

(
∨
i∈c+

vi) ∨ (
∨
i∈c−
¬vi)

 (2.38)

where c runs over a set of “clauses”. Each clause c ≡ c+ ∪ c− is a set of
variables, some of which are negated (those in c−). Each clause c has size less
than or equal to k: |c| ≤ k. Here ∧ signifies conjunction (binary “and”) and
∨ signifies disjunction (binary “or”). Thus, the formula is a conjunction of
disjunctive clauses - for the formula to be true, every clause must be satisfied,
which means that at least one of the clause’s positive variables must be true,
or at least one of its negative variables must be false. For k ≥ 3, we can
find a k-SAT instance where a given set of assignments to some variables,
and no other, satisfies the formula (possibly by introducing extra variables).
This is not possible with 2-SAT, however, whose satisfying assignments form
a structure called a “median graph” and have the property that given a

59K. Jung and D. Shah. “Inference in binary pair-wise markov random field through self-
avoiding walk”. In: (2006); D. Weitz. “Counting independent sets up to the tree thresh-
old”. In: Proceedings of the thirty-eighth annual ACM symposium on Theory of computing.
ACM. 2006, pp. 140–149.

60Erik Sudderth, Martin Wainwright, and Alan Willsky. “Loop Series and Bethe Varia-
tional Bounds in Attractive Graphical Models”. In: Advances in Neural Information Pro-
cessing Systems 20. Cambridge, MA: MIT Press, 2008, pp. 1425–1432; Y. Watanabe and
K. Fukumizu. “Loop series expansion with propagation diagrams”. In: Journal of Physics
A: Mathematical and Theoretical 42 (2009), p. 045001; Y. Watanabe and K. Fukumizu.
“Graph zeta function in the Bethe free energy and loopy belief propagation”. In: Advances
in Neural Information Processing Systems 22 (2009), pp. 2017–2025.
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set of three satisfying assignments, if we construct a new assignment (the
“median” of the three) in which each of the variables take the values they
took in the majority of the other assignments, then the new assignment is
also satisfying.61

Assume that the input graph is binary. Call this graph P and let it as
usual be given by P (x) = 1

Z

∏
α ψα(xα).

We see that a state x∗ has positive probability if and only if the following
boolean expression is true:∧

α∈F

∧
xα∈Xα
ψα(xα)=0

∨
i∈α

xi 6= x∗i (2.39)

Introduce a boolean variable vi which is true if x∗i = 1 and false otherwise;
the expression becomes:

∧
α∈F

∧
xα∈Xα
ψα(xα)=0

(
∨
i∈α
x∗
i
=1

vi) ∨ (
∨
i∈α
x∗
i
=0

¬vi)

 (2.40)

The positive states of P are thus instances of k-SAT, where k is the size
of the largest factor in P . Any set of states can be realised as a solution
set of k-SAT (perhaps by introducing auxiliary variables) when k ≥ 3. But
when k = 2, such sets must obey the median rule defined above. If we can
show that our definition of reduction preserves lack of median structure,
then we are done: an arbitrary model P (without median structure) cannot
be reduced to a binary pairwise model Q (with median structure).

Let f be the PA-map of a representation of P (x) by Q(y), where Q has
median structure. Consider a triple of states x(1), x(2), x(3) in P (i.e. these
are full, not partial, assignments), each with positive probability, and let x∗

be their median. These map under f to a triple of PAs y
(1)
r1 , y

(2)
r2 , y

(3)
r3 in

Q. Since each PA y
(i)
ri has positive probability Q(y

(i)
ri ) = P (x(i)), it can be

extended to a state y(i) with positive probability. The median of these three
states let us call y∗. Since we assumed the median property for Q, we have
Q(y∗) > 0. Now we would like to show that y∗ is an extension of f(x∗). This
follows from the variable intersection rule for PA maps: f(x) =

⋂
i f(xi).

More specifically, let i ∈ VP . Since x∗i is a median of (x
(1)
i , x

(2)
i , x

(3)
i ), it must

have the same value of two of these - say, WLOG, x
(1)
i and x

(2)
i . But y

(1)
r1

61T. Feder. “Network flow and 2-satisfiability”. In: Algorithmica 11.3 (1994), pp. 291–
319. issn: 0178-4617.
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and y
(2)
r2 will then both be consistent with f(x∗i ) = f(x

(1)
i ) = f(x

(2)
i ). As a

consequence, y∗ will share this consistency: any variable which is fixed in
f(x∗i ) will appear in both y(1) and y(2) and hence y∗. Since we have shown
y∗ is consistent with f(x∗i ) for all i, it follows that y∗ must be an extension
of f(x∗). Now, Q(y∗) > 0 since we assumed Q to have median structure.
But y∗ ∈ f(x∗) so P (x∗) = Q(f(x∗)) ≥ Q(y∗) > 0. Thus x∗ has positive
probability in P . Hence, P has median structure.

We have proven that our reductions preserve lack of median structure,
from which it follows that inference in a model whose positive states lack
median structure cannot be reduced to inference in a binary pairwise factor
graph. We have indicated that general factor graphs do not have median
structure: see equation 2.42 for a concrete counterexample, the “XOR dis-
tribution”.

Below we demonstrate the manner in which median structure is pre-
served by our notion of representation, for a toy example. The PA map
of the example representation is given by f(s1 = 1) = {t1 = 1}, and
f(s1 = −1) = {t1 = −1, t2 = −1}, and f(s3 = −1) = {t6 = 1}, and so
on. One can check that any assignment of values to the “wildcard” vari-
ables (marked “?”) in the PAs above the line will be consistent with some
refinement of the median PA below the line:

s1 s2 s3 t1 t2 t3 t4 t5 t6
−1 1 1 −1 −1 ? 1 −1 ?
1 −1 1 1 ? −1 ? −1 ?
1 1 −1 1 ? ? 1 ? 1

median: 1 1 1 1 ? ? 1 −1 ?

(2.41)

A concrete example of a distribution which is not representable with a
binary pairwise graph is the “XOR distribution”:

P (s1, s2, s3) =

{
1
4

∏
i si = −1

0 otherwise
(2.42)

where si ∈ ±1. The median structure demands that “111” has a positive
probability, since the following three positive configurations each have a
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majority of 1 for each variable:

s1 s2 s3
−1 1 1
1 −1 1
1 1 −1

median: 1 1 1

(2.43)

But the distribution assigns it a zero probability.
However, it is possible to construct a limit of binary pairwise graphs

which approaches the XOR distribution with arbitrary precision. This is
because it is possible to implement the following distribution as a binary-
pairwise factor graph, for finite k:

P (s1, s2, s3) = exp

(
k

3∏
i=1

si

)
(2.44)

The following explicit construction is due to Martijn Leisink.62 Introduce an
auxiliary variable s4, and create a network:

a

a a

c

c

c

s1

s2 s3

s4

b

b b

d

(2.45)

with weights shown (corresponding to factors exp(as1s4), exp(bs1), etc.),
having values:

b =
k

4 |k|
acosh (e4|k|) (2.46)

c = − |b| (2.47)

a =
−k
4 |k|

acosh (e8|b|) (2.48)

d = |a| (2.49)

62Martijn Leisink. Personal communication. Jan. 2010.
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This set of weights is not unique, since although there are 4 unknown
weights and 4 unique (up to permutation) values for the state s1:3, the
partition function of the new model is an extra degree of freedom which
can be constrained by the simplifying choice, d = |a|, from which follows
c = − |b| and the other two equations.

It is straightforward to check that the network induces the distribution
P on s1:3 when marginalising out s4. This allows us to prove the following
theorem:

Theorem 3. Every factor graph can be represented arbitrarily closely by a
binary pairwise graph

More precisely, the size of the output binary pairwise graph is a fixed
function of the input graph, and only the parameters must change in order
obtain a closer approximation to the input graph.

We note that since it has been known that inference in binary pairwise
factor graphs is NP-hard (see for instance Barahona63), it follows that these
models are expressive enough to represent NP-complete problems such as
SAT, even though working out the details of such a representation might be
cumbersome. However, it is not necessarily clear how to represent other NP-
hard problems, such as inference in general factor graphs, using the binary
pairwise form. As we saw in the previous theorem, it is not the case that
there is a simple correspondence.

Proof. Assume, WLOG, that the original graph is in pairwise form. Now
create a new graph with a variable k = (i, xi) for each of the (variable, value)
pairs in the old graph, which will be by construction x̂k = 1 if the variable
i takes state xi, and x̂k = 0 otherwise. Introduce an edge ((i, xi), (j, xj))
for each edge (i, j) in the old graph and each pair of states (xi, xj), with
factor potentials equal to 1 if either x̂(i,xi) = 0 or x̂(j,xj) = 0 and equal
to ψij(xi, xj) otherwise. One can see that this graph has an unnormalised
joint which coincides with that of the original graph for each allowed state.
We still need to exclude states where a variable takes “multiple values”,
i.e. x̂(i,xi) = x̂(i,x′i) = 1 for xi 6= x′i, and we need to ensure that at least one
x̂(i,xi) is 1. For each variable i, introduce an edge ((i, xi), (i, x

′
i)) for each pair

of values xi 6= x′i with factor potential equal to zero if both xi and x′i are 1,
and equal to 1 otherwise. This ensures that no more than one x̂(i,xi) is 1 for
each i, but the remaining case where x̂(i,xi) = 0 for all xi is not yet excluded
by the new graph. We can exclude it by introducing a new XOR factor of

63F. Barahona. “On the computational complexity of Ising spin glass models”. In: Jour-
nal of Physics A: Mathematical and General 15 (1982), p. 3241.
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size |Xi| which ensures that an odd (and therefore non-zero) number of the
x̂(i,xi) are equal to 1. The following diagram describes the transformation
for the case |Xi| = |Xj | = 4 (the XOR factors are marked ⊕):

i j

⊕ ⊕

i j

(2.50)

It is easy to see that an XOR factor of size n can be constructed by
combining n− 2 XOR factors of size 3 (and with a single edge when n = 2).
Since XOR factors of size 3 can be achieved as a limit of binary pairwise
graphs (by letting k → ±∞ in 2.44) this completes the proof.

This also shows

Corollary 4. Any discrete factor graph can be converted to binary 3-wise
form

Since the 3-wise to pairwise transformation of Leisink only breaks down
in the presence of potential functions with zero entries, we ask whether it
is possible to perform the binary pairwise conversion without resorting to a
limit when graph potentials are strictly positive.

The answer is “yes”. We prove this result in two parts. First, we show
how to convert a general factor graph with positive entries to positive-entry
binary n-wise form. Then we describe how to convert a binary n-wise graph
with positive entries into binary-pairwise form.

Theorem 5. Any discrete factor graph can be converted to binary form, in
such a way that if the original graph had strictly positive potentials then the
output graph also has strictly positive potentials

Proof. Choose a binary encoding for the values in each variable’s domain
Xi. The encoded values may contain different numbers of bits, since |Xi|
may not be a power of 2. The encoding will correspond to a binary tree
with |Xi| leaves. In the new graph, for each variable i introduce ki binary
variables, where ki is the maximum depth of the tree. To these variables
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attach factors whose entries at a given (binary) assignment correspond to the
entries of factors in the original graph at the decoding of that assignment.
Lastly, we need to compensate for the fact that a single variable assignment
xi in the original graph may correspond to multiple assignments of the ki
binary variables, due to the presence of extra unused variables when xi is
encoded with fewer than ki bits. To this end, attach a factor to the ki
binary variables corresponding to the variable i, with values corresponding
to 2fi(xi)−ki , where fi(xi) is the length of the encoding of xi. This ensures
that summing over the unused variables gives the correct probability of an
assignment in the original graph.

Proposition 6. The n-wise soft-XOR factor

P (s) ∝ exp

(
k

n∏
i=1

si

)
(2.51)

(with k finite) can be represented in binary pairwise form.

Proof. A factor with k ≤ 0 can be represented by a k ≥ 0 factor by flipping
the sign of one of the variables, so assume k ≥ 0.

Consider connecting the n binary variables s1:n with 3-wise soft-XOR
factors, each of strength k′, in a loop as shown:

⊕ t1

s1

⊕

t2

s2

⊕
t3

s3

⊕
t4

s4

⊕

t5
s5

(2.52)

We will prove that for any k we can always find a k′ such that the above
graph implements the distribution of equation 2.51. The probability of a
configuration of the s variables is

P (s) ∝
∑
t

exp(k′(tns1t1 + t1s2t2 + . . .+ tn−1sntn)) (2.53)
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This summation has 2n terms. Observe that when two states s and s′ have
the same parity, then the terms in the summation for P (s) are a permu-
tation of those in the summation for P (s′). To see this, consider inverting
a neighbouring pair of s variables, si and si+1. The effect is the same as
inverting ti, which permutes the terms of the sum over t, leaving the total
value invariant. But a sequence of such inversions can be used to go be-
tween any s and s′ if they have the same parity. In particular, inverting
all ti for which

∏i
j=1 sj = −1 rearranges the terms to correspond either to

s = (1, 1, . . . , 1) (if
∏n
j=1 sj = 1) or s = (−1, 1, . . . , 1) (if

∏n
j=1 sj = −1).

This shows that

P (s) =

{
p1 :

∏n
j=1 sj = 1

p2 :
∏n
j=1 sj = −1

(2.54)

for some p1 and p2, which is the same as saying

P (s) ∝ exp(k
∏
i

si) (2.55)

where k = 1
2 log p1

p2
.

It remains to verify that the relationship k′ 7→ k can be inverted. At
least for small n this relationship appears to be strictly monotonic, but it is
not necessary to prove that fact in general. All that is needed is to observe
that k′ = 0 gives p1 = p2 =⇒ k = 0, and k′ →∞ =⇒ k →∞. The second
implication follows from the fact that the term with the largest exponent in
p1 is exp(k′n) (with coefficient 1), while that in p2 is exp(k′(n − 2)) (with
coefficient n) - or simply from observing the values of the network when the
3-wise soft-XORs become XORs. Finally, continuity and the intermediate
value theorem imply that for any positive k, we can find a k′ such that the
above graph (2.52) is equivalent to a n-wise soft-XOR of strength k.

Corollary 7. Any n-wise binary factor with strictly positive entries can be
implemented in binary pairwise form

Proof. The 2n functions se11 s
e2
2 . . . senn with ei ∈ {0, 1} form an independent

basis for the space of real-valued functions of s, so we can write the factor
as exp(

∑
e aes

e1
1 s

e2
2 . . . senn ) for some coefficients ae. But this can be imple-

mented by constructing 2n soft-XOR factors of strength ae, each covering
subsets of the variables defined by e.

Together with Theorem 5, this proves:

Theorem 8. Any factor graph with strictly positive factors can be imple-
mented in binary pairwise form
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We note that many of the conversions in this section produce output
graphs containing a variable for each member of the domain of each variable
and factor in the original graph. Since these variables are usually fully
connected by pairwise factors, the number of factors in the output graph
is going to be proportional to the square of the size of the domains in the
input graph. We do not give precise relationships, but note that even though
the complexity of the conversion is polynomial, the resulting graphs may be
quite large.

2.4.3.3 Planar binary pairwise graphs

Finally, we address the problem of converting an arbitrary factor graph to
planar form. If n-ary variables are allowed in the planar graph, this task
is easy: we simply draw the graph in two dimensions, and introduce a new
variable wherever two edges cross. The new variable encodes the values at
an endpoint of each of the two original edges.

i j

k

l

i j

k

l

(j, l)
(2.56)

Here, the factor between the new (j, l) variable and j enforces consistency
between xj and x(j,l); similarly for the factor between (j, l) and l (in both
cases this is indicated with a double tic). The factors between i and (j, l)
and between k and (j, l) copy the entries of ψij and ψkl, respectively.

Finding a conversion for the binary pairwise planar case is more difficult
since only two values can be used to propagate data across an intersection.
Inference in binary pairwise planar graphs was shown to be NP-hard by
Barahona (1982)64 (although it is tractable in the special case of Ising “spin
glasses”, with soft-XOR pairwise factors and no singleton factors - also called
“pure interaction potentials”65) so it is conceivable that there would be a
way to convert from ordinary factor graphs to binary pairwise factor graphs.

64Ibid.
65M.E. Fisher. “On the dimer solution of planar Ising models”. In: Journal of Mathemat-

ical Physics 7 (1966), p. 1776; A. Globerson and T.S. Jaakkola. “Approximate inference
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Such a conversion would be of interest because of the existence of a number of
results which apply only to the planar binary pairwise case, in approximate
inference66 and statistical physics.67

We are not aware of a way to turn arbitrary factor graphs into binary
pairwise planar graphs exactly, but it is straightforward to effect such a
conversion in a limit.

Theorem 9. Any discrete factor graph can be represented arbitrarily closely
by a planar binary pairwise factor graph.

As in Theorem 3, the structure of the output graph is fixed and only the
parameters must vary to achieve an arbitrarily accurate representation.

Proof. Convert the graph to binary pairwise form as described above, and
replace each pair of overlapping edges with the following subgraph, using
soft-XOR 3-wise nodes of strength m.

i j

k

l

i j′ j

k

l′

l

⊕ ⊕

⊕⊕
(2.57)

As previously, edges with a double tic enforce the constraint that their end-
point variables match (i.e. in this case they have potentials

[
1 0
0 1

]
). The

factor connecting i and j′ in the new graph should be the same as ψij in the
old graph, and similarly for k and l′.

In the limit as m→∞, the soft-XOR factors become XOR factors; then,
note that l′ is forced to take the value of l, and j′ to take the value of j.

using planar graph decomposition”. In: Advances in Neural Information Processing Sys-
tems 19 19 (2007), p. 473.

66Globerson and Jaakkola, “Approximate inference using planar graph decomposition”,
op. cit.; M. Chertkov, V. Gomez, and H. Kappen. Approximate inference on planar graphs
using loop calculus and belief progagation. Tech. rep. Los Alamos National Laboratory
(LANL), 2009.

67Fisher, “On the dimer solution of planar Ising models”, op. cit.; P.W. Kasteleyn.
“Dimer statistics and phase transitions”. In: Journal of Mathematical Physics 4 (1963),
p. 287.
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2.4.3.4 Conclusion

We have demonstrated a number of formal conversions between different
types of factor graphs, which prove that inference in one class of graphs can
be implemented using inference in a more restrictive class. To the best of
our knowledge, of the theorems appearing in this subsection only Theorem
1 has been published before.

We summarise the results. General discrete factor graphs can be con-
verted to pairwise form and to binary form and in particular to binary 3-wise
form. They can be converted to binary pairwise form if they have positive
entries (and some discrete factor graphs with zeroes, such as the binary 3-
wise XOR, cannot be implemented in binary pairwise form). If they have
zero entries, they can still be represented arbitrarily closely by a binary pair-
wise graph. Additionally, general discrete factor graphs can be represented
arbitrarily closely by a planar binary pairwise graph.

It is also interesting to consider the question of whether we can quantify
the extent to which transformations such as the binary pairwise transforma-
tion make inference more difficult, either by distributing information across
multiple variables, or by introducing frustrated factors (which is to say, fac-
tors whose effects tend to almost cancel each other out, as in the case of
Leisink’s 3-wise-to-pairwise transformation) or factors with very large or
very small entries. As in the case of k-SAT vs. 2-SAT, it may be that in-
ference is easier in binary pairwise graphs than more general graphs (which
would partly justify the number of algorithms that only apply to binary pair-
wise graphs). Quantifying the extent to which the binary pairwise transfor-
mation amplifies “frustration” or some other measure of inference difficulty
would help set bounds on the extent to which binary-pairwise-specific al-
gorithms can be more powerful than more general algorithms. Numerical
experiments, not described here68, indicate that even sophisticated approxi-
mate inference algorithms perform poorly in models produced by reductions
which make use of pairwise soft-XOR factors, for example the reduction of
Theorem 3.

2.4.3.5 Acknowledgements

We are indebted to Martijn Leisink for his (unpublished) pairwise soft-XOR
factor, and to Joris Mooij for pointing us to this construction.

68These results will be published separately.
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2.5 Complexity of inference

This section discusses the computational complexity of inference. It assumes
a basic familiarity with the theory of complexity (which is a measure of the
difficulty of a computational task), including the complexity classes P and
NP, NP-complete, NP-hard, and so forth. A brief glossary is provided for
review:

• Turing machine (TM) - An idealised computer. The precise defini-
tion is not important, since all of the “reasonable” formal architectures
which one might define, including that of the original TM, can be simu-
lated on each other with at most a polynomial-time slow-down, leaving
the basic complexity classes invariant.

• Decision problem - A problem with arbitrary input and boolean
(accept/reject) output.

• P - The class of decision problems which are soluble on a TM in time
bounded by a polynomial function of the input length.

• Nondeterministic Turing Machine (NTM) - A TM which is
allowed to make “non-deterministic” choices - the input is accepted
if some unspecified set of choices leads to an “accept state”. Can be
thought of as optionally forking a parallel TM thread at each step; if
one of the threads accepts the input then the NTM accepts it.

• NP - The class of decision problems which are polynomial-time solu-
ble on an NTM. Contains P. (Can also be thought of as problems whose
“solutions” come with proofs that are polynomial-time verifiable on a
TM)

• P 6=NP - The conjecture that NP does not equal P, proposed by Cook
197169 and still unsolved.70

• Polynomial-time reducible - We can “reduce problem A to prob-
lem B in polynomial time” iff, given an oracle that solves problem B
in constant time, we can solve problem A in polynomial time. (An
oracle is like a magic subroutine)

69S.A. Cook. “The complexity of theorem-proving procedures”. In: Proceedings of the
third annual ACM symposium on Theory of computing. ACM. 1971, pp. 151–158.

70L. Fortnow. “The status of the P versus NP problem”. In: Communications of the
ACM 52.9 (2009), pp. 78–86.
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• NP-complete - A problem is NP-complete if it is in NP and any other
problem in NP can be reduced to it in polynomial time. Conjectured
not to overlap with P (which would imply P=NP).

• NP-hard - A problem is NP-hard if problems in NP are polynomial
time reducible to it (but it need not itself be in NP, or even be a
decision problem).

The canonical NP-complete problem is boolean satisfiability or SAT,
which can in turn be polynomial-time reduced to its subclasses k-SAT (de-
fined in the previous section) for k ≥ 3.

The NP-completeness of SAT is called the Cook-Levin theorem, which
can be proven by showing that the problem of finding the correct non-
deterministic choices to cause a specific NP program to be accepted by an
NTM, can be polynomial-time reduced to boolean satisfiability. This is
straightforward: introduce a variable corresponding to every aspect of the
state of the NTM at every moment in time (only a polynomial-sized amount
of memory needs to be modelled), form a boolean expression from these
variables which is true iff their values correspond to a legal execution of the
NTM, and show that the size of the resulting expression is bounded by a
polynomial function of the input.

The problem of statistical inference is not a decision problem so it is not
in P or NP. However, it is easy to reduce a k-SAT instance to the problem
of computing marginals in a factor graph. Given the k-SAT instance

∧
c

(
∨
i∈c+

vi) ∨ (
∨
i∈c−
¬vi)

 (2.58)

we construct a binary factor graph with factors c, and variables i, and po-
tentials

ψc(vc) =

{
1 if (

∨
i∈c+ vi) ∨ (

∨
i∈c− ¬vi)

0 otherwise
(2.59)

If the formula is satisfiable then the distribution

P (v) =
1

Z

∏
c

ψc(vc) (2.60)

is well-defined (has a non-zero normalising constant). If we can compute
marginals for the distribution, i.e. if we can perform inference, then we
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can find a satisfying assignment by selecting a variable i and value v∗i with
P (vi = v∗i ) > 0, then e.g. updating the model to force vi = v∗i (multiplying
by a unary factor which is 1 when vi = v∗i and 0 otherwise), and recalculating
the marginals, and repeating. This procedure performs inference n times,
where n is the number of variables, and so is a polynomial-time reduction of
k-SAT to inference. This proves that exact inference is NP-hard.71 A similar
argument can be used to show that SAT can be reduced to the problem
of finding marginals accurate to some constant ε, so even the problem of
“do approximate inference to within a specified level of accuracy” shares
the property of NP-hardness.72 It is not clear if any classes of approximate
inference tasks can be guaranteed as tractable for general models, although
inference is easy in many restricted model classes such as trees (section
2.3.1).

Note that, as is common when applying complexity theory to numerical
algorithms, these analyses sweep under the carpet the question of the influ-
ence of a need for greater or lesser numerical precision on time and memory
usage; but we imagine the results should remain valid even under a more
careful formalism.

The unproven but, some would say, intuitively obvious conjecture P 6=NP
would imply that SAT cannot be solved in polynomial time. This is to
say that it is difficult to solve arbitrary SAT instances. It may be that
the best possible time complexity is exponential in the number of variables
(this is called the “exponential time hypothesis”73), which is the cost of a
naive solver that examines each set of variable assignments one at a time.
This would then be true for the cost of statistical inference as well. Yet
the presumably exponential time-complexity of SAT does not deter various
computer scientists from working on SAT solvers. Even if the worst-case
performance of such solvers is exponential, it may be that there is consid-
erable variation in speed, by constant factors, or by a different base for the
exponent, between different solvers. Furthermore, one would like to be able
to solve certain more tractable classes of SAT problems as quickly as their
structure allows. Also, it is convenient to reduce other NP problems such as
automated planning or electronic design automation to SAT, so a good SAT

71G.F. Cooper. “The computational complexity of probabilistic inference using Bayesian
belief networks”. In: Artificial intelligence 42.2-3 (1990), pp. 393–405; Barahona, “On the
computational complexity of Ising spin glass models”, op. cit.

72P. Dagum and M. Luby. “Approximate probabilistic reasoning in Bayesian belief net-
works is NP-hard”. In: Artificial Intelligence 60 (1993), pp. 141–153; D. Roth. “On the
hardness of approximate reasoning”. In: Artificial Intelligence 82.1-2 (1996), pp. 273–302.

73Impagliazzo and Paturi, “Complexity of k-SAT”, op. cit.
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solver can have general applicability. Examples of popular algorithms for
SAT include deterministic algorithms such as DPLL74 (a variant of Davis
Putnam75) and stochastic algorithms GSAT76 and walk-SAT.77

The place of inference in machine learning is analogous to that of SAT
in computer science. Inference can be done exactly, in time which is expo-
nential in the number of variables in the model, and it is unlikely that we
will be able to find inference algorithms which do any better in the worst
case. But on the other hand, good statistical inference methods are use-
ful in a variety of settings. There is a demand for exact inference solvers
with low constant overhead, as there is for approximate inference solvers
with good performance on certain tractable classes of models or for certain
lenient types of prediction.

SAT-like problems, which is to say NP-complete ones, often arise in
settings where we want computers to solve difficult, adversarial tasks (such
as games), or to reason about their own behaviour (some problems in code
optimisation and analysis and theorem proving).78 These are all capabilities

74M. Davis, G. Logemann, and D. Loveland. “A machine program for theorem-proving”.
In: Communications of the ACM 5.7 (1962), pp. 394–397.

75M. Davis and H. Putnam. “A computing procedure for quantification theory”. In:
Journal of the ACM (JACM) 7.3 (1960), pp. 201–215.

76B. Selman, H. Levesque, and D. Mitchell. “A new method for solving hard satisfiability
problems”. In: Proceedings of the tenth national conference on artificial intelligence. 1992,
pp. 440–446.

77B. Selman, H. Kautz, and B. Cohen. “Local search strategies for satisfiability testing”.
In: (1993).

78We should point out here that what is usually considered “theorem proving”, which is
theorem proving in first order or higher-order logic, is in fact undecidable, as are standard
problems in program analysis such as the “halting problem,” i.e. deciding whether a given
program will terminate on a given input. “Undecidable” means that there is no algorithm
which is guaranteed to find a solution to arbitrary such problems in finite time. This is
closely related to Gödel’s incompleteness theorem. Theorem proving in very simple logics,
e.g. propositional logic, which is the same as SAT, is decidable. Undecidable problems
can perhaps be thought of as NP-complete problems to which some form of abstraction
has been added, so that there are no longer a finite number of solutions. Although we will
try to restrict ourselves to proposing NP-complete problems as targets for approximate
inference, we think that the distinction between NP-complete and undecidable is not so
important here. Any intelligent system would have to be able to “call it quits” given
some inputs, whether the problems it is being asked to solve are decidable or not. In
practise, every computer has finite memory and every user has finite time, and it seems
like it ought to make little immediate difference whether these resources are exhausted
on a problem whose potential complexity is theoretically unbounded or theoretically very
large. Additionally, most systems for theorem proving or for program analysis, despite
having to tackle undecidable problems in general, make heavy use of subsystems which
are solving problems in SAT.
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which would be natural to demand of an “autonomous” or “intelligent”
system. As we argued in the introduction, it is also natural to associate the
NP complexity class with intelligence, because it comprises those problems
which may be difficult but whose solutions can be associated with correctness
proofs which are easy to verify.

Statistical inference should be seen as a continuous version of SAT, one
which is capable of reasoning about uncertainty using the laws of probabil-
ity. In the introduction, we raised the question: given that everything is
ultimately either true or false, is reasoning about uncertainty really neces-
sary? We argued that uncertainty should play a fundamental role in rea-
soning, even in situations such as SAT where the problem to be solved
is well-defined and completely deterministic. We based this argument on
analogies to problem-solving in mathematics, as well as recent work on the
SAT problem itself which employs methods from statistics, namely survey
propagation. Survey Propagation works by sending messages, composed of
probabilities, between clauses in a SAT instance, and has been successful in
solving previously difficult79 random k-SAT instances generated close to the
“hard SAT” region near the SAT-UNSAT phase transition. It is equivalent
to running BP on a special graph.80

These arguments were intended to point us to the conclusion that proba-
bilistic reasoning frameworks such as statistical inference are a more natural
foundation for intelligent systems than outwardly deterministic frameworks
such as SAT. In view of this, one might venture to argue that too much
work is being devoted to complexity theory and the study of NP-complete
problems, and not enough to statistical inference. But of course, it is dif-
ficult to know when one has identified the correct framework until one has
done something useful with it, and neither framework can claim significant
progress towards the goal of autonomy in digital computers. And although
we are interested here in approximate inference in discrete factor graphs,
some of the same arguments which we have put forward to advocate such
a probabilistic framework could also be used to argue for the use of con-
tinuous factor graphs, which would be better able to reason about their
own (continuous-valued) beliefs, or non-parametric models which could po-
tentially represent uncertainty in meta-beliefs. It is difficult to envision a

79M. Mézard and R. Zecchina. “Random K-satisfiability problem: From an analytic
solution to an efficient algorithm”. In: Physical Review E 66.5 (2002), p. 56126; A. Braun-
stein, M. Mezard, and R. Zecchina. “Survey propagation: an algorithm for satisfiability”.
In: Random Structures and Algorithms 27.2 (2005), pp. 201–226.

80A. Braunstein and R. Zecchina. “Survey propagation as local equilibrium equations”.
In: Journal of Statistical Mechanics: Theory and Experiment (2004).
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framework which is “complete” in this sense, so we have stopped at one
which seems to make a reasonable compromise between simplicity and ex-
pressivity, viz., discrete factor graphs. In any case, none of the techniques
presented in this dissertation seem to have very natural analogs in the sim-
pler SAT framework.
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Chapter 3

Conditioned Belief
Propagation

Abstract

Conditioning is a simple technique for partitioning the task of inference in a
statistical model between two or more sub-models. We describe an approx-
imate, divide-and-conquer application of variable conditioning to statistical
inference. Our algorithm is based on recursive conditioning and Belief Prop-
agation. We consider the problem of choosing which variable to condition at
each level of recursion, and propose a fast heuristic using reverse-mode au-
tomatic differentiation (i.e. back-propagation) to obtain potential gradients
at BP fixpoints.

3.1 Introduction

Cutset conditioning (CC) is an exact inference algorithm described by Pearl,1

which functions by creating sub-models in which a model is conditioned
on each possible value of some fixed subset of its variables. The results
of running BP in each sub-model are combined to obtain marginals for the
original model. When the condition variables form a “cutset”, meaning that
they intersect every loop in the model, then the conditioned sub-models are
singly-connected and inference is exact; this is the CC algorithm proper. We
explore an approximate, recursive variant of the same idea. In our algorithm,
condition variables are selected one at a time and need not form a cutset.

1Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference,
op. cit.
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We explore ways of choosing condition variables at each level of recursion.
We develop a heuristic based on an application of reverse-mode automatic
differentiation (RAD) (known as “back-propagation” in the neural network
field) to BP, and present experiments characterising its effectiveness. We
show that our algorithm is competitive with published inference algorithms
on some standard models. We also identify some basic shortcomings and
discuss directions for improvement.

The organisation of this chapter is as follows. First we describe existing
work on cutset conditioning and on automatic differentiation of BP. Then
we review our definitions, with brief descriptions of BP, conditioning, and
back-propagation. We then present a description of the algorithm itself,
followed by the results of experiments which compare the performance of
our algorithm with other popular algorithms.

3.2 Background

The CC algorithm, mentioned in the introduction, is described in more detail
in section 3.3.3.

An approximate application of CC in causal networks was described by
Horvitz et al,2 but their inference setting is slightly different from ours.
As with CC, the time complexity of their algorithm is exponential in the
cutset size. They only consider trading time for accuracy in updating the
beliefs after modifying the model through the incorporation of “evidence”
from observations. Their algorithm is only useful, in other words, when
alternating inference with learning. But we are only concerned with the
“pure” setting of approximate inference, in which a model has already been
learned.

Darwiche also describes an approximate version of CC, which again ap-
plies only to causal networks.3 It creates a Boolean formula describing state-
ments which are approximately true of the model. Each entry in each of
in the network’s conditional probability tables which is smaller than some
threshold value is used to generate an implication which is added to this
formula. Darwiche’s algorithm seems to be of limited usefulness, not only

2E.J. Horvitz, H.J. Suermondt, and G.F. Cooper. Bounded conditioning: Flexible in-
ference for decisions under scarce resources. Tech. rep. Stanford University. Medical Com-
puter Science. Knowledge Systems Laboratory, 1990.

3A. Darwiche. “Conditioning methods for exact and approximate inference in causal
networks”. In: Proceedings of the Eleventh Annual Conference on Uncertainty in Artificial
Intelligence. 1995.
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because it doesn’t apply to general factor graphs, but also because it is pos-
sible to obtain arbitrarily unlikely states in models whose probability tables
are arbitrarily close to uniform, even though such models would not benefit
from the algorithm.

Our description of a “recursive” form of cutset conditioning may risk
conflation with another algorithm of Darwiche called “recursive condition-
ing”4 (RC). RC is an exact algorithm which has the property of being able
to smoothly trade-off consumption of time and space by caching intermedi-
ate results. His use of “recursion” is in a sense which is nearly orthogonal to
our own: making use of topological information in the graphical structure,
it recursively decomposes a model into disconnected submodels through the
instantiation of each combination of variables in a set. We are not interested
in exact inference; and we ignore graph topology, since we assume that the
presence of dense but weak factors may make topology uninformative in
most models.

Our application of RAD to BP, which we call BBP, is related to Welling
and Teh’s work on “linear response” (LR).5 Their LR algorithm applies
forward-mode automatic differentiation (FAD) techniques to BP to calculate

a full set of partial derivatives ∂bi(xi)
∂ψj(xj)

. Computing such a matrix requires

time quadratic in the number of variables and states (proportional to n runs
of BP), but their algorithm can be straightforwardly modified to output a
vector of first derivatives of the beliefs b corresponding to an input vector
of perturbations of ψ (which is the usual task of FAD). Our reverse-mode
algorithm calculates the gradient of some objective function with respect to
the factor potentials, given the gradient with respect to the beliefs. It has the
same time complexity as this modified LR. After publication of the paper
on which this chapter is based, we discovered that the two propagation
algorithms can be used to calculate the same quantities and are in fact
related by a somewhat involved transformation. Our formulation of BBP is
more general because it avoids the use of division and so can be applied to
models with zeroes, or very small values, but LR can easily be adapted to
have the same property. It is interesting to consider why the two methods
for propagating derivatives, one which follows messages forward in time and
the other which follows them backwards, should be equivalent. This may be
a fruitful topic for future research.

4A. Darwiche. “Recursive conditioning”. In: Artificial Intelligence 126.1-2 (2001),
pp. 5–41.

5M. Welling and Y.W. Teh. “Linear response algorithms for approximate inference in
graphical models”. In: Neural computation 16.1 (2004), pp. 197–221.
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3.3 Prologue

3.3.1 Factor graphs

In this chapter we define graphical models using a variation on the conven-
tions of section 2.1, explicitly including univariate factors ψi to emphasise a
kind of variable-factor duality. We write the normalisation constant (parti-
tion function) using a subscript (ZP ) to distinguish it from others introduced
later. Our model is then defined as

P (x1, . . . , xN ) =
1

ZP

∏
i

ψi(xi)
∏
α

ψα(xα) (3.1)

where

ZP =
∑
x

∏
i

ψi(xi)
∏
α

ψα(xα) (3.2)

A probability distribution q will often be defined by normalising a given
measure m:

q(x) =
m(x)∑
x′m(x′)

(3.3)

When there is no room for confusion, for each such q we will define the
normalisation constant Zq ≡

∑
xm(x) and unnormalised measure q̄(x) ≡

m(x) = Zqq(x).

3.3.2 Belief Propagation

BP was defined in 2.3.1. We present a dual form for the BP message up-
dates, which are passed between every factor α and each of its neighbouring
variables i ∈ α.

niα(xi)←
1

Zniα
ψi(xi)

∏
β∼i\α

mβi(xi) (3.4)

mαi(xi)←
1

Zmαi

∑
xα\i

ψα(xα)
∏
j∼α\i

njα(xj) (3.5)

These messages should be propagated until convergence. The following
equations yield estimates for variable and factor marginals:

Pi(xi) ≈ bi(xi) =
1

Zbi
ψi(xi)

∏
α∼i

mαi(xi) (3.6)

Pα(xα) ≈ bα(xα) =
1

Zbα
ψα(xα)

∏
i∼α

niα(xi) (3.7)
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BP also provides an estimate of ZP using the Bethe free energy:

− logZP ≈FBethe ≡
∑
α

∑
xα

bα(xα) log

(
bα(xα)

ψα(xα)

)
+
∑
i

∑
xi

bi(xi) log

(
bi(xi)

ψi(xi)

)
−
∑
i

∑
xi

|i| bi(xi) log (bi(xi)) (3.8)

3.3.3 Conditioning

One technique for improving the performance of BP, and indeed any infer-
ence algorithm providing an estimate of the partition function ZP , is called
“conditioning”. The idea of conditioning is to write a model as a sum of sim-
pler models, apply inference to each sub-model, and combine the resulting
approximate marginals using the ZP estimates from the sub-models. The
decomposition into sub-models is expressed using a “condition” variable c:

P̄ (x) = P̄ (x)(Ic + I¬c) ≡ P̄ (x|c) + P̄ (x|¬c) (3.9)

ZP = ZP (|c) + ZP (|¬c) (3.10)

(Recall that P̄ ≡ ZPP is the unnormalised distribution. Ic is an “indicator
variable” for c; in other words it takes the value 1 when c is true and 0
otherwise.) Dividing equation 3.9 by ZP yields the more familiar

P (x) = P (x|c)P (c) + P (x|¬c)P (¬c) (3.11)

where P (c) ≡ ZP (|c)
ZP

and P (¬c) ≡ ZP (|¬c)
ZP

.
Since equation 3.10 gives a rule for estimating the partition function of

the original model, the conditioning idea can be applied recursively in a
divide-and-conquer fashion. We will refer to any combination of BP and
conditioning using divide-and-conquer as “conditioned BP” or CBP.

The CC algorithm can be seen as an instance of CBP, conditioning on
all possible values of a set of variables (the cutset) whose removal makes G
singly connected (tree-like). Since BP is exact on trees, the CC algorithm
is also exact. The drawback of CC is that its run-time is exponential in the
cutset size, so it is only applicable to small or tree-like graphs.

Here we will only consider conditions c of the form {xi = x̂i} for some
variable i and state x̂i. Then Ic(x) = δx̂i(xi) and I¬c(x) = 1−δx̂i(xi), so the
two conditioned submodels can be expressed by replacing the original factor
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ψi(xi) with δx̂iψi(xi) and (1−δx̂i)ψi(xi), respectively. In the first submodel,
the variable xi is “clamped”6 to the state x̂i, and in the second it is required
to take any state but x̂i (there may be more than one). Each sub-model has
fewer states than the original, without extending the original factor graph;
so we might hope that combining the submodels would yield more accurate
approximate marginals. The analogous technique of Rao-Blackwellization,
which applies to sampled estimates, is guaranteed to produce estimates with
lower variance. Empirically, the combined BP estimates are usually but not
always more accurate (section 3.5).

After obtaining a pair of sub-models, CBP applies conditioning recur-
sively to each one, so that eventually a binary tree of conditions is explored -
we will call this the “condition tree” - with BP being run only at the leaves.

An implementation of CBP is defined by how it decides which variable
to clamp to which value at each level of recursion. One simple method is to
choose a uniformly random variable and value - we call this “CBP-rand”. In
the next section, we explore a more advanced heuristic for choosing condition
variables.

3.4 Algorithm

Our proposal is based on the following idea: because BP uses local messages,
it poorly represents correlations between distant variables. Since CBP must
rely on conditioning to capture distant correlations, it should condition on
variables whose potentials have the greatest “influence” on the rest of the
graph. Conditioning on a set X ′i ⊆ Xi has the same effect as setting to
zero any value of ψi(xi) with xi /∈ X ′i . We propose that the notion of the
“influence” of a variable i and value xi can be usefully approximated as the
effect of infinitesimal variation of ψi(xi). The effect should be measured
with respect to some function of the BP beliefs, call it V (b). Although we
can compute the change in V directly by clamping each variable i in the
graph to each possible value xi and running BP, such a procedure would
have time complexity quadratic in the number of graph variables. If we can
make do with querying infinitesimal changes in V , then we only need the
derivatives dV

dψi(xi)
. We can compute a full set of such derivatives in linear

time complexity using a standard technique called back-propagation.

6In our terminology, to “clamp” a variable to a value means to condition the model so
that the variable takes that value. Thus clamping is a special case of conditioning.
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3.4.1 Back-Propagation and BP

In this section, we will apply RAD (back-propagation) to Belief Propagation,
deriving an iterative algorithm for estimating the gradient of any differen-
tiable objective function of the BP beliefs with respect to the factors of the
model. We will refer to this algorithm as back-belief-propagation or BBP.7

The BP updates may not converge when initialised at a given point in
the configuration space of factors and initial messages, but if they do, then
typically there will be a smooth function between some open ball in that
space, and the BP approximate marginals. The derivatives of this function
are well-defined, and are what we seek to calculate.

RAD computes the derivatives of a common objective function V with
respect to various quantities, call them y. We will abbreviate these deriva-
tives (not following any existing convention) as

d/y ≡ dV

dy
(3.12)

This is called the adjoint of y (with respect to V ). Given V (f(y), g(y)), we
can apply the chain rule to compute d/y = ∂f

∂y d/f + ∂g
∂yd/g. This process can

be extended to general function compositions and is called back-propagation
or reverse-mode automatic differentiation.8

We can assume that the BP messages are updated in parallel, and index
them with a variable t ∈ [0, T ]. Then, given an objective function specified in
terms of BP beliefs V (b), we can compute the adjoints of the factors ψi and
ψα by following the BP messages backwards through time. The functional
dependencies are depicted in figure 3.1. Using the chain rule, we can derive
equations for the back-propagation of BP message and factor adjoints.

Note that to use these equations, we must save the message normalisers
from the BP run, since we need to calculate unnormalised adjoints from the
normalised adjoints (e.g. to calculate d/n̄iα from d/niα requires Zniα). This is
done using the following general formula. Given a normalised distribution
q(x) = 1

Zq
q̄(x) as in equation 3.3, and assuming that V doesn’t depend

7There is a more recent method for computing the same quantities, which approximates
derivatives with difference quotients. It makes use of the observation that the BP Jacobian
is symmetric. It has the same time complexity and smaller constant overhead, but is less
numerically stable than BBP (Justin Domke. “Implicit Differentiation by Perturbation”.
In: Advances in Neural Information Processing Systems 23. 2010, pp. 523–531).

8A. Griewank. “On automatic differentiation”. In: Mathematical Programming: Recent
Developments and Applications (1989), pp. 83–108.
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ψi

ψα

ntiα

mt
αi

bα

bi

V

Figure 3.1: Functional dependencies of BP

explicitly on Zq, we can write d/q̄ in terms of d/q and Zq:

d/q̄(x) =
1

Zq

(
d/q(x)−

∑
x′

q(x′)d/q(x′)

)
(3.13)

We should be able to take T → ∞ and get sensible answers. But the
factor adjoints involve a sum of the message adjoints over time, which would
diverge if the message adjoints did not converge to zero. In fact, for non-
degenerate problems BP converges to attractive fix-points, which means that
to a certain extent it is insensitive to the initial values of messages. This
means that if we go far enough back in time, the messages have diminishing
contribution to the final beliefs, and their adjoints should converge to zero
as required. In this way, the BBP algorithm is both sensitive to initial
conditions (which are used to specify the objective function), and convergent
to a stable fixed point.

The equations can be simplified. Since BP will have converged, we can
assume the messages are constant with respect to time, and drop the t
superscripts from the BP messages (and their normalisers).

Furthermore, the factor adjoints d/ψi(xi) and d/ψα(xα) are expressed as
initial values plus a sum involving message adjoints over time. We can
compute such quantities incrementally, by making sure that each time we
update a message adjoint, we also update the appropriate factor adjoint.

This yields the following algorithm:
Algorithm (BBP)

Input: The beliefs and messages (and normalisers thereof) of a BP run,
also an objective function V (b) defining initial adjoints d/bi and d/bα

Output: d/ψi(xi), d/ψα(xα)

57



Chapter 3. Conditioned Belief Propagation 3.4. ALGORITHM

Precompute the following quantities:

Tiα(xi) =
∏
β∼i\α

mβi(xi) (3.14)

Uαi(xα) =
∏
j∼α\i

njα(xj) (3.15)

Siαj(xi, xj) =
∑
xα\i\j

ψα(xα)
∏

k∼α\i\j

nkα(xk) (3.16)

Rαiβ(xi) = ψi(xi)
∏

γ∼i\α\β

mγi(xi) (3.17)

Initialise:

d/ψi(xi)←

(∏
α∼i

mαi(xi)

)
d/b̄i(xi) (3.18)

d/ψα(xα)←

(∏
i∼α

niα(xi)

)
d/b̄α(xα) (3.19)

d/niα(xi)←
∑
xα\i

ψα(xα)
∏
j∼α\i

njα(xj)d/b̄α(xα) (3.20)

d/mαi(xi)← ψi(xi)
∏
β∼i\α

mβi(xi)d/b̄i(xi) (3.21)

Then, apply the following updates in parallel (for every factor α and variable
i) until the message adjoints converge to zero:

d/ψi(xi)← d/ψi(xi) + Tiα(xi)d/n̄iα(xi) (3.22)

d/niα(xi)←
∑
j∼α\i

∑
xj

Siαj(xi, xj)d/m̄αj(xj) (3.23)

d/ψα(xα)← d/ψα(xα) + Uαi(xα)d/m̄αi(xi) (3.24)

d/mαi(xi)←
∑
β∼i\α

Rαiβ(xi)d/n̄iβ(xi) (3.25)

The individual updates, which must be performed for each edge in the factor
graph until convergence, are (assuming a bounded state-space for each vari-
able) of complexity quadratic in the largest number of variables in a given
factor, and in the largest number of factors containing a given variable.
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3.4.1.1 Sequential updates

The above parallel algorithm occasionally suffers from numerical stability
problems. It is straightforward (but slightly more involved) to derive a se-
quential algorithm which computes the same quantities, one message at a
time, by ensuring that mt+1

αi = mt
αi for all but one (α, i) (see section 3.8,

figure 3.5). The sequential algorithm has the same time complexity as the
above, but it allows us to fine-tune the order in which updates are per-
formed. In particular, we can record the order in which BP messages are
sent (which may be according to a dynamic schedule as in RBP9 or its
refinements10), and send BBP messages in the reverse of this order. Em-
pirically, this method yields slightly better convergence than the parallel
algorithm, and is therefore used throughout the experiments (section 3.5),
with BP messages scheduled as in RBP (this means that message updates
are sorted so that those which cause the greatest change in their messages
are processed first). However, only the results for the “alarm” graph (figure
3.4) were noticeably improved by the use of sequential BBP updates.

3.4.2 CBP-BBP

We have not yet addressed the question of which objective function V (b)
to use with BBP. There are several possibilities, and the following proposal
seems to perform well. The performance of some other objective functions
is shown in the appendix (figure 3.6).

We use a brief run of Gibbs sampling to select a random state x? of the
model. Then we define

V G,x?({bα}α) =
∑
α

bα(x?α) (3.26)

The intuition behind this choice is that we want to find a condition which
“pushes” the model’s beliefs in a certain direction. If the model’s probability
mass is concentrated in several modes, then we expect Gibbs sampling to
produce a sample x? from one of them; the objective function V G,x? then
helps us identify a variable that pushes the beliefs in the direction of that
mode.

The complete CBP-BBP algorithm becomes

9G. Elidan, I. McGraw, and D. Koller. “Residual belief propagation: Informed schedul-
ing for asynchronous message passing”. In: Proceedings of the Twenty-second Conference
on Uncertainty in AI (UAI), Boston, Massachussetts. Vol. 6. 6.4. 2006, pp. 6–4.

10C. Sutton and A. McCallum. “Improved dynamic schedules for belief propagation”.
In: Proceedings of the 23rd Conference on Uncertainty in Artificial Intelligence. 2007.
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Algorithm (CBP-BBP)
Input: A graphical model, and a maximum number of variables to clamp
Output: A set of approximate beliefs, and an approximate Z
1. Run BP. If the maximum number of variables have been clamped,

return the BP beliefs and estimated Z. Otherwise,
2. Run Gibbs sampling to get a state x?

3. Run BBP with V = V G,x?

4. Find the pair (i, xi) with largest d/ψi(xi)
5. Clamp variable i to xi and recurse
6. Clamp variable i to Xi \xi and recurse (i.e., condition on membership

in Xi \ xi)
7. Combine the results from steps 5 and 6 as described in section 3.3.3
An implementation of this algorithm based on libDAI11 can be down-

loaded from http://mlg.eng.cam.ac.uk/frederik/aistats2009_choosing.

php.

3.5 Experiments

Our experiments use 8 graphical models, representing 23 combinations of
topology (square grid, random regular), variable arity (2, 4), and potential
initialisation (modes, random). The “random” potentials are created by
setting each factor entry to exp(σW ) where W is a standard normal deviate
and σ = 1. The “modes” potentials are created by choosing 3 random
configurations x?,1...3 for the graph variables, and setting each factor entry
ψα(xα) to some constant c if it is consistent with one or more of them

(i.e. xα = x?,kα for some k) and to 1 otherwise. We arbitrarily choose c to be
4. This is a way of creating graphs with long-distance correlations. Most of
the model’s probability mass will be concentrated in the 3 selected “modes”.

Our first task is to establish that the CBP-BBP algorithm chooses better
conditioning variables than CBP-rand. We calculate the accuracy of the
approximation generated from a condition tree of fixed uniform depth; this
depth is called the “clamping level”. Plots of accuracy vs. clamping level are
shown in figure 3.2. In all the plots in this chapter, each CBP-BBP and CBP-
rand data point shows the result of averaging error and timing data for 5
runs of the algorithm. The errors are computed as total variation distance12

11J.M. Mooij. libDAI 0.2.2: A free/open source C++ library for Discrete Approximate
Inference methods. http://mloss.org/software/view/77/. 2008.

12The total variation distance is half of the L1 distance: 1
2

∑
x |P (x)−Q(x)|
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Figure 2: Comparisons of BBP clamping (CBP-BBP) to random clamping (CBP-rand) and “exploratory” clamp-
ing (CBP-explore), on eight example graphs.

Figure 3.2: Comparisons of BBP clamping (CBP-BBP) to random clamping
(CBP-rand) and “exploratory clamping” (CBP-explore), on eight example
graphs.
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Figure 3: Performance for different versions of CBP and other standard approximate inference algorithms. Some
algorithms, such as LCBP and MR, required too much time or memory to run on some graphs (such as those
with 4-ary variables and random regular topology).

Figure 3.3: Performance for different versions of CBP and other standard
approximate inference algorithms. Some algorithms, such as LCBP and MR,
required too much time or memory to run on some graphs (such as those
with 4-ary variables and random regular topology).
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between our single-node marginals, and exact marginals (calculated by the
junction tree algorithm with HUGIN updates13).

In each model, CBP-BBP is usually better than CBP-rand at a given
level, but the difference is sometimes small. Also included for comparison is
an algorithm “CBP-explore” which (as suggested at the beginning of section
3.4) prospectively clamps each variable to each value and runs BP, choos-
ing the (variable, value) pair which produces marginals that are maximally
different (L1 distance) from the current marginals. This is slower than CBP-
rand or CBP-BBP, being quadratic in the size of the graph, but gives an
interesting comparison and often produces more accurate results. We are
not sure why CBP-BBP is sometimes more accurate than CBP-explore.

Next, we compare the performance of CBP-BBP to other algorithms.
We use the implementations found in libDAI14 for these experiments.

Gibbs - Gibbs sampling, using runs with from 1000 to 107 samples
BP - Belief Propagation
MF - Mean Field
TreeEP - algorithm of Minka and Qi15

GBP - Generalised Belief Propagation,16 using loops of size 4
HAK - algorithm of Heskes, Albers, and Kappen,17 using loops of size

4
LCBP - Loop Corrected Belief Propagation (full cavities)18

MR - algorithm of Montanari and Rizzo19

The last two algorithms are based on propagating cavity distributions
and have complexity exponential in cavity size. The random regular graphs
of arity > 2 have cavities which are too large, so these algorithms can only
be tested on the other graphs. Also, MR requires binary variables and could
not be run on the 4-ary graphs.

Figure 3.3 shows the results of these experiments.20 Notice that CBP-

13Jensen, Olesen, and Andersen, “An algebra of Bayesian belief universes for knowledge-
based systems”, op. cit.

14Mooij, libDAI 0.2.2: A free/open source C++ library for Discrete Approximate Infer-
ence methods, op. cit.

15Minka and Qi, “Tree-structured approximations by expectation propagation”, op. cit.
16Yedidia, Freeman, and Weiss, “Generalized belief propagation”, op. cit.
17Heskes, Albers, and Kappen, “Approximate inference and constrained optimization”,

op. cit.
18Mooij et al., “Loop corrected belief propagation”, op. cit.
19A. Montanari and T. Rizzo. “How to compute loop corrections to the Bethe approxi-

mation”. In: Journal of Statistical Mechanics: Theory and Experiment 10 (2005), P10011.
20The poor accuracy of GBP in these comparisons may be surprising. Note that GBP

has the same fixpoints as HAK, a slower, double-loop alternative, with better convergence
guarantees. Under ideal circumstances, the accuracy of the two algorithms should be the
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BBP still typically dominates CBP-rand, not just when comparisons are
binned by clamping level but also runtime, even though it is usually some-
what slower due to the overhead of BBP21. Gibbs sampling eventually per-
forms better than our algorithm, for long runs. Figure 3.4 shows per-level
comparisons and performance plots for the “alarm” graph, which is part of
libDAI. There were convergence problems for BP and BBP on this graph,
which may explain the poor results.

Choosing a Variable to Clamp
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Figure 4: Performance on “alarm” graph; level com-
parison to CBP-rand on same graph

Figure 3.4: Performance on “alarm” graph; level comparison to CBP-rand
on same graph

Our implementation of both CBP-BBP and CBP-rand include the op-

same. The poor accuracy of GBP may be due to its implementation in libDAI which
uses message updates defined in the inner loop of HAK, rather than the parent-to-child
updates endorsed by Yedidia, Freeman and Weiss (JS Yedidia, WT Freeman, and Y. Weiss.
“Constructing free-energy approximations and generalized belief propagation algorithms”.
In: IEEE Transactions on Information Theory 51.7 (2005), pp. 2282–2312; Tom Minka.
Personal communication. Feb. 2010).

21In our experiments, CBP-rand is up to 2.1 times faster than CBP-BBP for a fixed level
of clamping. Sometimes, however, due to faster convergence of the BP runs in CBP-BBP,
CBP-rand is slower (by up to about 1.5 times).
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timisation of not clamping a variable whose BP marginal is already close
to 0 or 1. The number of levels of recursion is otherwise fixed. We have
experimented with heuristics for controlling recursion depth automatically,
for instance recursing until the current Z estimate is smaller than a cer-
tain fraction of the top-level Z, but these did not have notably different
performance than fixed-level recursion.

3.6 Discussion and future work

We have presented an approximate inference algorithm, based on a divide-
and-conquer approach to inference, which combines BP and variable condi-
tioning. The time complexity of the algorithm is proportional to the cost
of a BP run, the square of the maximum variable or factor degree, and is
exponential in the number of clamped variables. This “clamping level” can
be specified by the user to achieve a desired speed/accuracy trade-off. One
advantage of our algorithm is that it can be applied to models with large
or densely connected underlying graphs. It seems particularly promising on
models with long-range correlations between variables. It performs well on
models where probability mass is divided between a few isolated “modes”
which can be separated by appropriately chosen conditions.

The rest of this section describes some directions in which the CBP-
BBP algorithm might be improved, and also poses some difficult problems
which provide additional motivation for the research in later chapters. The
descriptions are very rough and are aimed at readers interested in extending
our research; the general reader may skip this section without detracting
from the rest of the thesis.

In our opinion, the main drawback of CBP is its poor performance on
models with weak coupling, or with multiple groups of variables that are in-
dependent or almost independent. For instance, consider how CBP behaves
on a model Gn, consisting of n disconnected copies of a model G. Clamping
a variable in the first copy will not change the marginals in any of the other
copies; it is necessary to repeat this clamping n times, once for each copy of
G, to have the same effect which clamping that variable had in the original
G. But due to the hierarchical nature of CBP, these n variables cannot be
explored separately, i.e. in parallel, taking advantage of the n-way factori-
sation of Gn, but rather each of the 2n combinations of their values must
be enumerated and associated to a run of BP. In general, to get the same
accuracy in Gn which we had been able to obtain by exploring a condition
tree with k levels in G, we need to explore a condition tree with nk levels,
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which will be a power of n more expensive (2nk = (2k)n). For example, for a
fixed recursion depth, simply duplicating a model makes CBP quadratically
slower. By contrast, in BP or Gibbs sampling or almost any other inference
method, inference in a duplicated model is only about twice as hard, and
Gn is n times as hard as G. The comparative difficulties that CBP experi-
ences on Gn would presumably carry over to a perturbed version of Gn as
well, in which factors are introduced to create a weak coupling between the
various copies of G, so that they are no longer strictly independent but only
approximately so.

Poor performance on models with weak coupling is not specific to CBP
but characterises any naive application of divide-and-conquer which is based
on conditioning. Understanding how to remedy this shortcoming, perhaps
with some “parallel” version of CBP, should be considered a prerequisite
to making the CBP concept useful for more general applications. We are
not sure how to do this, but can say a few words about the ideas that we
have considered. They are all based on the observation that, once one has
selected a tree of successively more specific conditions, it is straightforward
to run BP on all the conditioned models simultaneously. This is done by
extending the definition of messages so that each message has one vector
of probabilities for each leaf in the condition tree; the message updates
must also be modified to take the conditions into account, by modifying the
appropriate factors for each message component. But once the algorithm has
been transformed in this way, it is straightforward to locally prune the tree
of conditions, so that certain conditions are omitted in parts of the graph
where they have negligible effect. (See also Tom Minka’s “gates” approach
to message passing in mixture models.22) When messages pass into a region
with fewer conditions, the message components corresponding to any missing
condition must be merged using a weighted average. The weights can be
derived from a local form of the Bethe free energy, analogously to the way in
which submodel weights were derived from the standard Bethe free energy
in CBP. One can easily extend the same idea to the case where completely
different condition trees are used in different overlapping regions, as long
as the Cartesian product of the sets of conditions is tracked in the region
of overlap. When some members of this Cartesian product are absent, so
that the condition tree looks more like a forest, then it is not clear what
one should do to recombine the messages. For example, such a situation
would correspond to running BP with x1 clamped to 0 and then 1; and
then with x2 clamped to 0 and then 1; but not exploring combinations such

22T. Minka and J. Winn. “Gates: A graphical notation for mixture models”. In: (2008).
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as (x1 = 0, x2 = 1). One can think of creative ways to combine the output
marginals resulting from such runs, perhaps by using a weighted combination
of the x1-clamped marginals to approximate marginals of variables which
seem to be more strongly influenced by x1 than x2 (using some heuristic to
assess “influence”), and correspondingly for those variables which are more
strongly influenced by x2.

This line of reasoning soon confronts us with a more serious problem,
however, which seems difficult to overcome with heuristics. This is the prob-
lem of deciding which sets of conditions to explore, and at which locations in
the graph to do so. The BBP heuristic presented in this chapter, whose per-
formance was moderately encouraging, only had to choose a single variable
and value at each step. Taking advantage of the small number of (variable,
value) pairs in a graphical model we were able to compare the performance
of our heuristics with that of other more expensive heuristics that explored
all such choices exhaustively. But the space of choices to be made is much
larger in the case of an algorithm which associates a different set of con-
dition trees locally to each variable. Furthermore, in such cases we must
also decide how messages between such variables could be combined, and so
forth. We have investigated the implementation of a simple form of parallel
CBP based on some naive heuristics, but we were not impressed with the
results.

We note that the problem we are considering at this point is close to
the problem of how to do a “sparse Generalised Belief Propagation”. The
main drawback of GBP is that its cost is exponential in the size of the
regions, which limits its potential for simplifying inference in graphs with
long-range correlations. Yet one can imagine that in many instances, only a
few assignments of the variables in a region have significant probability mass.
If we could modify GBP to track only these values, then we could use it with
much larger regions. There are heuristics for choosing GBP regions,23 and it
is possible to construct a simple “sparse GBP” by giving a “default value” to
all but some of a region’s variable assignments. Combining these tasks has
not to our knowledge been given an elegant solution, and moreover it seems
unclear to us that such a simplistic approach to sparse GBP is proper - in
the first place, it still requires us to examine all of the possible probabilities
of variables in a region before deciding which ones are small enough be
discarded. However, just as GBP is parametrised by a set of regions, we

23M. Welling. “On the choice of regions for generalized belief propagation”. In: Pro-
ceedings of the 20th Annual Conference on Uncertainty in Artificial Intelligence. 2004,
pp. 585–592.
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could view a hypothetical sparse GBP algorithm as being parametrised by a
set of “partial assignments” (PAs), which we define as assignments to some
subset of the variables in the graph. The information in a PA is the same
as that which is needed to characterise a condition on a set of variables, so
perhaps the task of designing a good sparse GBP algorithm runs up against
the same problems as that of a parallel CBP algorithm: even if we knew of
a good way for PAs to interact, we would still be faced with the problem of
choosing which ones to keep track of; and such a decision involves selecting
from a very large space of possibilities.

At first glance, in order to solve the problem of selecting sets of PAs
(or, equivalently, conditions) one would desire a way for these PAs to com-
pete against each other in a kind of artificial evolution. The goal would
be to obtain a near-optimal set of PAs using a selection process. Perhaps
such a mechanism could also be used to answer the first question as well,
viz., how the PAs should interact (in the message-passing sense), since com-
petition is itself a kind of interaction. But the way forward may on the
other hand involve more complex considerations, since a set of approximate
marginals is calculated using cooperation between different parts of the set
of regions/messages/PAs, and assigning or partitioning credit for the algo-
rithm’s overall accuracy among these various parts may not be as simple
as asking them to compete as individuals. We could illustrate this with an
analogy to football (soccer): for instance, we wouldn’t choose each of the
members of a football team by the same metrics, or by having potential
members play against each other one on one; but rather, each player should
be chosen to have certain qualities - offence, defence, goal-keeping, etc. - so
that the combination makes a good team. Accordingly, we might want to
envision a system where a set of PAs is considered to make up the “genes” of
an “agent”, and different combinations of genes are explored by combining
the genotypes of different agents. To return to the football analogy, this
would not be a very efficient way of choosing a team, but it would at least
evaluate a set of players using the proper criteria, namely by their ability to
function as a team when playing against some other team. Such analogies
are explored more fully, and compared to prior work in the field of Genetic
Algorithms, in section 6.6.

We have by this point posed so many questions as to invite the criticism
that this chapter contains more speculation than actual results. Yet we
hope that we may have cast some useful light on the motivation behind this
research direction, and on the ways in which it can proceed, which may
provide illumination for other workers investigating the same topic.

Another objective of this discussion was to present a new connection
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between the subject of this chapter and the subjects of the next three chap-
ters. The PA connection we outlined here represents more faithfully the
train of thought which led us to the later investigations, and may provide
a useful contrast to the original connection set forth in the introduction
and referenced in the title of this dissertation, namely that of “combining
approximations”.
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3.8 Appendix

3.8.1 BBP derivation

Applying the chain rule to the message representation in section 3.3.2 yields
the following equations:

d/ψi(xi) =

(∏
α∼i

mT
αi(xi)

)
d/b̄i(xi) +

T∑
t=1

∑
α∼i

 ∏
β∼i\α

mt−1
βi (xi)

 d/n̄tiα(xi) (3.27)

d/ψα(xα) =

(∑
i∼α

nTiα(xi)

)
d/b̄α(xα) +

T∑
t=1

∑
i∼α

 ∏
j∼α\i

nt−1jα (xj)

 d/m̄t
αi(xi) (3.28)

d/ntiα(xi) = δTt
∑
xα\i

ψα(xα)
∏
j∼α\i

nTjα(xj)

 d/b̄α(xα)

+ (1− δTt )
∑
j∼α\i

∑
xj

 ∑
xα\i\j

ψα(xα)
∏

k∼α\i\j

ntkα(xk)

 d/m̄t+1
αj (xj) (3.29)

d/mt
αi(xi) = δTt

ψi(xi) ∏
β∼i\α

mT
βi(xi)

 d/b̄(xi)

+ (1− δTt )
∑
β∼i\α

ψi(xi) ∏
γ∼i\α\β

mt
γi(xi)

 d/n̄t+1
iβ (xi) (3.30)

Here, α \ i \ j just means (α \ i) \ j.
24Mooij, libDAI 0.2.2: A free/open source C++ library for Discrete Approximate Infer-

ence methods, op. cit.
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To derive a sequential update rule, we use a different message repre-
sentation, which sends only a single message Et = (α, i) at time t. This
representation also includes a damping factor λ, which should be 1 for no
damping.

b̄α(xα) = ψα(xα)
∏
i∼α

niα(xi) (3.31)

b̄i(xi) = ψi(xi)
∏
α∼i

mαi(xi) (3.32)

n̄tiα(xi) = ψi(xi)
∏
β∼i\α

mt
βi(xi) (3.33)

¯̂mt
αi(xi) =

∑
xα\i

ψα(xα)
∏
j∼α\i

ntjα(xj) (3.34)

mt+1
αi (xi) = (m̂t

αi(xi))
λδ

(α,i)

Et (mt
αi(xi))

1−λδ(α,i)
Et (3.35)

Here is a diagram of the dependencies in the new message equations:

ψi

ψα

ntiα

mt
αim̂t

αi

bα

bi

V

Computing adjoints and eliminating t superscripts for messages (having con-
verged), and noting that at convergence m̂αi(xi) = mαi(xi), and using pre-
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computed quantities T , U , S, and R (equations 3.14, 3.15, 3.16, 3.17) yields:

d/ψi(xi) = d/b̄i(xi)
∏
α∼i

mαi(xi) +
T∑
t=0

∑
α∼i

d/n̄tiα(xi)Tiα(xi) (3.36)

d/ψα(xα) = d/b̄α(xα)
∏
i∼α

niα(xi) +

T∑
t=0

∑
i∼α

d/ ¯̂mt
αi(xi)Uαi(xα) (3.37)

d/ntiα(xi) = δTt
∑
xα\i

d/b̄α(xα)ψα(xα)
∏
j∼α\i

njα(xj)

+
∑
j∼α\i

∑
xj

d/ ¯̂mt
αj(xj)Siαj(xi, xj) (3.38)

d/mt
αi(xi) = δTt d/b̄i(xi)ψi(xi)

∏
β∼i\α

mt
βi(xi) + (1− λδ(α,i)Et )d/mt+1

αi (xi)

+
∑
β∼i\α

d/n̄tiβ(xi)Rαiβ(xi) (3.39)

d/m̂t
αi(xi) = λδ

(α,i)
Et d/mt+1

αi (xi) (3.40)

Which updates must be performed when Et = (α, i)? Note that Et =
(α, i) ⇐⇒ d/m̂t

αi(xi) 6= 0. In that case, d/ntjα(xj) > 0 for j ∼ α \ i. Thus
d/mt

βj(xj) must be incremented for j ∼ α \ i and β ∼ j \ α.
By eliminating d/niα, which is mostly zero after initialisation, we only

need keep quantities d/mαi(xi), d/ψi(xi), d/ψα(xα) between messages. The
final algorithm is shown in figure 3.5.
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Definitions:

Tiα(xi) =
∏
β∼i\α

mβi(xi) (3.41)

Uαi(xα) =
∏
j∼α\i

njα(xj) (3.42)

Siαj(xi, xj) =
∑
xα\i\j

ψα(xα)
∏

k∼α\i\j

nkα(xk) (3.43)

Rαiβ(xi) = ψi(xi)
∏

γ∼i\α\β

mγi(xi) (3.44)

Routines:
Send-niα (f(xi)) =

f̄(xi) = 1
Zniα

(
f(xi)−

∑
x′i
niα(x′i)f(x′i)

)
d/ψi(xi)← d/ψi(xi) + f̄(xi)Tiα(xi)
For each β ∼ i \ α do:
d/mβi(xi)← d/mβi(xi) + f̄(xi)Rβiα(xi)

Send-mαi =
d/ψα(xα)← d/ψα(xα) + λd/m̄αi(xi)Uαi(xα)
For each j ∼ α \ i do:

Send-njα
(
λ
∑

xi
d/m̄αi(xi)Sjαi(xj , xi)

)
d/mαi(xi)← (1− λ)d/mαi(xi)

Initialisation:

d/ψi(xi)← d/b̄i(xi)
∏
α∼i

mαi(xi) (3.45)

d/ψα(xα)← d/b̄α(xα)
∏
i∼α

niα(xi) (3.46)

d/mαi(xi)← d/b̄i(xi)ψi(xi)
∏
β∼i\α

mβi(xi) (3.47)

For each i, α do:

Call Send-niα

(∑
xα\i

d/b̄α(xα)ψα(xα)
∏
j∼α\i njα(xj)

)
Main loop:
Call Send-mαi for each message (α, i) sent by BP

Figure 3.5: A sequential BBP algorithm
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Figure 7: Comparison of different cost functions by clamping level: Gibbs-b (CBP-BBP): V =
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Figure 3.6: Comparison of different cost functions by clamping level: Gibbs-
b (CBP-BBP): V =

∑
i bi(x

?
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2. Gibbs-exp: V =∑
i exp(bi(x

?
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∑
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Gibbs-exp-factor). var-entropy: V =
∑
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∑
αH(bα).

Bethe-entropy: V = FBethe.
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Chapter 4

A conditional game for
comparing approximations

Abstract

We present a “conditional game” to be played between two approximate
inference algorithms. We prove that exact inference is an optimal strategy
and demonstrate how the game can be used to estimate the relative accuracy
of two different approximations in the absence of exact marginals. We also
prove a lower bound on the game’s discriminative power, and present exper-
imental results demonstrating its superiority to existing games in statistics.1

4.1 Introduction

Our interest in approximate inference is partly motivated by the recognition
that an ability to express beliefs is fundamental to intelligence. These be-
liefs may be manifested either indirectly through decisions as in betting, or
directly as probabilities.2 The problem of statistical inference - to compute
such probabilities for a given probabilistic model - is powerful and general.
Yet researchers should recognise that “real intelligence” goes beyond sta-
tistical inference in many ways. In particular, real intelligence is not just
limited to expressing beliefs, but is also able to justify and possibly modify

1This chapter is substantially the same as a paper which will be published as Eaton,
F. “A conditional game for comparing approximations”. In: Proceedings of the Fourteenth
International Conference on Artificial Intelligence and Statistics. Vol. 15. 2011.

2De Finetti, “Probabilism: A critical essay on the theory of probability and on the
value of science”, op. cit.
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its beliefs through communication. The need for this arises not only in cases
where two systems have different evidence, but also where they have reached
different conclusions from the same evidence. That two systems might ar-
rive at different beliefs about the same model follows from the reality that,
because of constraints on resources, inference in most practical applications
must get by with approximations. In such applications it is not feasible
to establish which approximation is best by simply comparing with exact
marginals, which will be unavailable. Any usable method for ranking two
approximations would have to be based on some kind of direct comparison.
This chapter investigates such a method, based on a two-player game.

4.2 Background

The problem of assessing the accuracy of approximations has been previously
considered. In the domain of Monte-Carlo-based inference, techniques exist
for determining whether a sequence of samples has converged.3 For message-
passing algorithms such as Belief Propagation, there are heuristics to bound
and estimate the accuracy of the final approximation.4 And when samples
from a true distribution are available, as when inference is combined with
learning, then the approximation accuracy can be estimated from the log-
likelihood of a test set.

These techniques have their uses. However, data points are expensive
in some domains, so it is not always possible to validate inference using a
test set. And heuristics may be unsuitable for making comparisons between
two different types of approximation. In general, evaluating the accuracy
of an approximation against itself by some internal metric is bound to be
unreliable. Comparing two approximations by self-appraisal will fail when
one of the approximations is overconfident due to its having overlooked some
important structure in the model, for instance in the case of a sampling run
which misses an important but isolated mode.

Situations where the computational effort of multiple humans has been
expended in parallel analysis of the same model are common in real life,
and humans are able to reclaim this seemingly duplicated effort by resolving
their disagreements through argument and debate. For intelligent systems

3Propp and Wilson, “Exact sampling with coupled Markov chains and applications to
statistical mechanics”, op. cit.

4J.M. Mooij and H.J. Kappen. “Bounds on marginal probability distributions”. In:
Advances in Neural Information Processing Systems 21. 2009, pp. 1105–1112; S. Shekhar.
“Fixing and Extending the Multiplicative Approximation Scheme”. MA thesis. University
of California, Irvine, 2009.
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to accomplish the same kind of cooperation, they would seem first of all to
require a way of directly comparing two approximations. To the best of our
knowledge, we are the first to propose a formal method for performing such
comparisons.

Finally, it is perhaps worth noting that approximate inference compe-
titions, such as the UAI approximate inference competition, currently re-
strict themselves to medium-sized models for which exact inference is still
tractable, because there has been no good way to compare the accuracy of
approximations without reference to exact marginals. As acknowledged by
Bilmes (2006),5 in such a competition it would be helpful to be able to eval-
uate the relative performance of algorithms on large models. Our method
provides a straightforward way of carrying out such an evaluation.

4.3 The conditional game

We define a game played on a factor graph, called the “conditional game”
(CG). As usual we define a distribution over n variables x := (x1, . . . , xn)
(here assumed discrete) as a normalised product of non-negative factors ψα
(here assumed strictly positive)

P (x) =
1

Z

∏
α

ψα(xα) (4.1)

where α indexes a collection of sets of variables.6

Play alternates between two players, the “marginal player”, MP, and the
“conditional player”, CP, over a total of n turns. At turn i the MP expresses
marginals for variable xi, say qi(xi). The CP then chooses a value for xi,
say x∗i . The variable xi is then fixed to take value xi = x∗i for the rest of
the game. Play finishes when the variables are all fixed, giving a complete
assignment x = x∗. A quantity which we will call the “value” of the game
is then defined in terms of x∗ and q:

V = log

∏n
i=1 qi(x

∗
i )∏

α ψα(x∗α)
(4.2)

Note that if the approximations q are exact conditionals, i.e. if

qi(xi) = P (xi|x∗1:i−1) (4.3)

5J. Bilmes. UAI06 Inference Evaluation Results. Department of Electrical Engineering,
University of Washington, Seattle. 2006.

6Kschischang, Frey, and Loeliger, “Factor graphs and the sum-product algorithm”, op.
cit.
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then we have

V = log

∏n
i=1 P (x∗i |x∗1:i−1)∏

α ψα(x∗α)
= log

P (x∗)∏
α ψα(x∗α)

(4.4)

= − logZ (4.5)

Thus if MP is exact, the choices of CP have no effect on the value V of the
game.

4.3.1 From approximations to players

To make the conditional game a game, one player should be trying to max-
imise V and the other to minimise V . It doesn’t matter who does which, as
long as the two players are in competition.

Now suppose that MP is trying to maximise V , and CP to minimise
it. Because probabilities sum to one, if CP has access to exact conditioned
marginals then it is possible for him to guarantee through appropriate choice
of x∗i that

qi(x
∗
i ) ≤ P (x∗i |x∗1, . . . , x∗i−1) (4.6)

If MP is not exact, then at least one of these inequalities can be made strict,
in which case it follows that V < − logZ. Thus exact marginals, yielding
V = − logZ, are the optimal (minimax) strategy for MP.

Given an approximation Q(x;ψ) it is straightforward to derive an MP
strategy: at turn i, modify the model ψ to condition on the appropriate
variables (perhaps this may be implemented by introducing new factors∏i−1
k=1 δ(xk, x

∗
k)), and set qi to the resulting approximate marginal7 of xi

under Q

qi(xi) = Q(xi|x∗1:i−1) (4.7)

≡ Q(xi;
∏
α

ψα(xα)

i−1∏
k=1

δ(xk, x
∗
k)) (4.8)

Note that for most message passing algorithms, the cost of recomputing
marginals after imposing a new condition can be mitigated by reusing the
messages between runs. If two parts of the graph are uncorrelated or weakly
correlated, then a variable in one part of the graph can be conditioned
without affecting the messages in the other part.

7In (4.8) we adopt the notation Q(x;ψ) to indicate Q’s approximation to a model which
is specified by the factors ψ.
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Suppose that the conditional player CP trusts a different approximation
to Q, call it R. A strategy for CP can be derived which employs R. In this
case, CP has multiple options, but it seems sensible for him to choose at
turn i:

x∗i = argmin
xi

qi(xi)

R(xi| . . .)
(4.9)

which is guaranteed to satisfy (4.6) if R is exact, and to do so strictly if MP
is not exact. Also, it is optimal at each turn, under the assumption that
MP might play optimally for the rest of the game.

A general strategy for MP or CP could be arbitrarily complex, for in-
stance attempting to look several moves ahead by simulating the opposing
player. This would presumably be more expensive (or error-prone) than
simply coming up with a more accurate approximation and using it in the
“naive” strategies above. Thus we will assume below that an approximation
will always be associated with one of the recommended strategies (including
the amendment for CP of section 4.3.3). This allows us to drop the distinc-
tion between approximations and players, and to view V as a function of
two approximations. We will write V +(Q,R) for the game value when CP is
trying to maximise V using approximation R against MP’s Q; and similarly
V −(Q,R) for when CP is minimising V .

We now illustrate the CG with a simple example. The model is the
fully-connected graph with four binary variables and six pairwise factors,

each with entries

[
0.1 1
1 1

]
. MP uses Belief Propagation8 and CP uses

Gibbs sampling with 103 passes. CP tries to minimise V .
The game is depicted in table 4.1. Shown are the probabilities that a vari-

able takes the value 1, i.e. qi(xi = 1). The final variable assignment is x∗ =

(1, 1, 0, 0). The final value of the game is V = log 0.743×0.705×(1−0.645)×(1−0.909)
0.1 =

−1.778. The true logZ is 1.723.

4.3.2 A bound

We have seen that if MP plays exact marginals, the game value will be
optimal, with V = − logZ. We can also derive a simple bound on V in
the case that MP’s marginals are not exact. We will assume that CP is
trying to minimise V , but results for the opposite case are analogous. Let
pi(xi) = P (xi|x∗1:i−1) denote the conditioned exact marginals.

8Pearl, “Fusion, propagation, and structuring in belief networks”, op. cit.
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i x1 x2 x3 x4 MP CP

1 ? 0.743 < 0.798

2 1 ? 0.705 < 0.738

3 1 1 ? 0.645 > 0.628

4 1 1 0 ? 0.909 > 0.908

1 1 0 0

Table 4.1: An example game

Theorem 10.

V − ≥ − logZ −
∑
i

max
xi
|log qi(xi)− log pi(xi)|

Proof. Let d = log
∏n
i=1

qi(x
∗
i )

pi(x∗i )
, then we can write V = d− logZ. We have

d ≥
∑
i

min
xi

log
qi(xi)

pi(xi)
= −

∑
i

max
xi

log
pi(xi)

qi(xi)
(4.10)

≥ −
∑
i

max
xi
|log qi(xi)− log pi(xi)| (4.11)

Thus, if we can guarantee that all of MP’s marginals are within a certain
distance (measured between logarithms) from the exact marginals, then we
can lower-bound V . The accuracy constraint must hold for both uncondi-
tioned and conditioned marginals, but approximations usually become more
accurate with conditioning, so this theorem gives some intuition as to the
relationship between V and the error of the node marginals. We note, how-
ever, that the CG is less concerned about the L1 error, and more concerned
about absolute error in log-marginals, to which we refer as the Llog

1 error.
For example, estimating 10−3 when the true probability is 10−4 would give
a greater Llog

1 error than estimating 0.2 when the true probability is 0.3,
even though the L1 error is greater in the second case.

4.3.3 Variable order

There is nothing special about the order i = 1, . . . , n in which variables are
conditioned at each turn, so it is possible to have CP specify a different
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order by choosing a variable as well as a value during his turn. (MP must
also be modified so that at each turn he specifies marginals for all variables,
and not just for the next variable, which he can no longer predict.) In the
new flexible-order setting, simply extending the optimisation of equation
4.9 to variables gives a similar optimality property. Thus at turn t, CP now
chooses

(it, x
∗
it) = argmin

(j,xj)

j /∈i1:t−1

Q(xj |x∗i1:t−1
)

R(xj |x∗i1:t−1
)

(4.12)

where Q is MP’s estimate and R is CP’s. The extra freedom for CP allows
us to prove a complementary bound to the previous one. Assume, again,
that CP wants to minimise V and has access to exact marginals P .

Theorem 11. If CP is allowed to choose the variable ordering, then he can
achieve V − ≤ − logZ −max(i,xi) log P (xi)

Q(xi)

Proof. V = − logZ + d where

d =

n∑
i=1

log
Q(x∗i |x∗1:i−1)
P (x∗i |x∗1:i−1)

(4.13)

An optimal CP will force each term of d to be negative (or zero). Taking only

the first, we have d ≤ log Q(x1)
P (x1)

. But the variable ordering is now decided
by CP, who can choose the first variable to get the tightest bound. He also
chooses the variable’s value, so

d ≤ min
(i,xi)

log
Q(xi)

P (xi)
= −max

(i,xi)
log

P (xi)

Q(xi)
(4.14)

4.3.4 The comparison of approximations

Having defined the conditional game, we now describe how this game can
be used to compare two approximate inference methods.

The value V of a game is a number typically near − logZ (with equality
in the case of an exact MP). We could declare a “winner” by comparing V
to − logZ, but the true value of − logZ is unknown and intractable. To
identify the most accurate of two approximations, it is helpful to have a

80



Chapter 4. A conditional game 4.3. THE CONDITIONAL GAME

score which can be compared to zero. Call the two approximations Q and
R and define the “difference score” by

S−(Q,R) = V −(Q,R)− V −(R,Q) (4.15)

i.e. the difference between two game values, played with approximations
switching roles as CP and MP, and CP minimising V . This will be ≥ 0 if
Q is exact. We also define S+ analogously using V +, that is, where CP is
maximising V .

We combine S+ and S− to get a “four-way score”, based on the outcomes
of four games9:

S4(Q,R) = S−(Q,R)− S+(Q,R) (4.16)

The advantage of S4 can be expressed as follows. The difference score
S− selectively penalises under-estimates of small probabilities by MP, while
S+ penalises over-estimates. For example, if MP under-estimates 0.01 for
P (xi = 0) when the true probability is 0.1, and CP is trying to maximise
V , then CP will be forced to choose the alternate value xi = 1 (to which
MP assigns probability 0.99) since he is only looking for over-estimates.
The absolute contribution to the error (e.g. d, equation 4.13) will then be∣∣log 0.99

0.9

∣∣ = 0.1 rather than the much larger
∣∣log 0.01

0.1

∣∣ = 2.3.
Our proposed method has now evolved from a simple two-player game

with fixed roles into a more complex ritual incorporating four such games,
during which players switch roles and objectives. The final product may
seem ad-hoc and inelegant. It may help to draw a comparison to legal
procedure, in which a simple building block - the questioning of a witness -
is employed in four ways to achieve a “fair trial”. The witness may be called
by the defence or the prosecution, and may be examined and cross-examined.

Finally, we combine the ideas of Theorems 10 and 11 to prove a simple
bound on S4.

Theorem 12. Suppose that we are given two approximations Q and R to a
true distribution P , with∑

t

∣∣∣∣∣log
R(x∗it |x

∗
i1:t−1

)

P (x∗it |x
∗
i1:t−1

)

∣∣∣∣∣ ≤ δ (4.17)

9If CP uses the rule of equation 4.12 to choose (variable, value) pairs, then the four-way
score incorporates four terms corresponding to the values of four games. However, there
are only two state configurations x∗, since the configuration which a Q CP chooses when
maximising V against a R MP is the same as that chosen by a R CP when minimising V
against a Q MP. Thus there are two pairs of terms incorporating the same unnormalised
probabilities

∏
α ψα(x∗α). However, the terms in each pair do not cancel out, because they

occur with the same sign.
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for all x∗ and all sequences i1:t, while

max
(i,xi)

∣∣∣∣log
Q(xi)

P (xi)

∣∣∣∣ ≥ ε (4.18)

Then S4(R,Q) ≥ ε− 5δ.

Proof. Write S4(R,Q) = V −(R,Q)−V −(Q,R)−V +(R,Q)+V +(Q,R). We
bound each of the terms:

(a) By Theorem 10, V −(R,Q) ≥ − logZ−δ and V +(R,Q) ≤ − logZ+δ.
(b) We bound V −(Q,R):

V −(Q,R) + logZ (4.19)

=
∑
t

log
Q(x∗it |x

∗
i1:t−1

)

P (x∗it |x
∗
i1:t−1

)
(4.20)

=
∑
t

(
log

Q(. . .)

R(. . .)
+ log

R(. . .)

P (. . .)

)
(4.21)

≤
∑
t

log
R(. . .)

P (. . .)
(4.22)

≤ δ (4.23)

Equation 4.22 follows from the fact that CP will choose log Q
R to be negative.

(c) For the last term V +(Q,R), suppose the first condition of the game
is (i1, xi1) = (k, x∗k). Let (j, x∗j ) be the maximising assignment in equation

4.18, so that either log
Q(x∗j )

P (x∗j )
≥ ε or ≤ −ε. Assume the first case; the proof

for the second follows by similarly modifying part (b) above. Now,

log
Q(x∗k)

R(x∗k)
≥ log

Q(x∗j )

R(x∗j )
(4.24)

= log
Q(x∗j )

P (x∗j )
− log

R(x∗j )

P (x∗j )
(4.25)

≥ ε− δ (4.26)
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Then as in (b),

V + logZ (4.27)

=
∑
t

(
log

Q(. . .)

R(. . .)
+ log

R(. . .)

P (. . .)

)
(4.28)

≥ ε− δ +
∑
t

log
R(. . .)

P (. . .)
(4.29)

≥ ε− 2δ (4.30)

where equation 4.29 follows from using 4.26 and i1 = k for the first term of
the summation.

Combining (a), (b), and (c) gives S4 ≥ ε− 5δ.

In other words, if we can bound the total Llog
1 error of one approximation

above by δ, and if we know that another approximation does worse than ε
for the maximum error of one of its variable marginals, and if ε − 5δ > 0,
then the first approximation will win against the second one by the four-way
score.

This bound is strict and so assumes the worst case scenario for every
game. A probabilistic analysis estimating average-case performance given a
random distribution of marginal errors might provide a more realistic picture
of the CG’s effectiveness, but we do not undertake such an analysis here.

4.4 Experiments

4.4.1 Alarm graph

We first present the results of playing the conditional game between five
different pairs of approximate inference algorithms, using the implementa-
tion in libDAI,10 running on the “alarm graph” found in libDAI, with 37
variables. The algorithms we consider are:

• Gibbs - Gibbs sampling, with 105 passes.

• BP - Belief Propagation, sequential updates.11

10J.M. Mooij et al. libDAI 0.2.5: A free/open source C++ library for Discrete Approx-
imate Inference. http://www.libdai.org/. 2010.

11Pearl, “Fusion, propagation, and structuring in belief networks”, op. cit.
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• CBP - Conditioned Belief Propagation, with 4 levels.12

• TreeEP - Tree Expectation Propagation.13

• LCBP - Loop Corrected Belief Propagation.14

The L1 and Llog
1 errors of the algorithms are shown in table 4.2. The S4

scores are shown in table 4.3. We see that the S4 scores agree with the
average Llog

1 errors on all pairs except BP vs Gibbs, where Gibbs wins even

though it has a larger average Llog
1 error. But note that the maximum Llog

1

error of Gibbs is smaller than that of BP, so there is at least one sensible
error measure which is consistent with the result of the game in every case.

Method avg L1 avg Llog
1 max Llog

1

LCBP 8.981e-05 5.586e-4 0.01684
TreeEP 0.008652 0.04424 0.5475
CBP 0.01110 0.05355 1.256
BP 0.01627 0.0712988 1.6424
Gibbs 0.02251 0.2111 0.8298

Table 4.2: Errors between approximate and exact variable marginals for
different approximations.

S4 vs: TreeEP CBP BP Gibbs

LCBP 5.2507 13.795 22.75 12.998
TreeEP 8.383 13.453 3.996
CBP 27.575 3.734
BP -4.032

Table 4.3: Scores of games between approximations

4.4.2 Generalised Belief Propagation

We might also be interested in measuring the relationship between score
and error for multiple models and a larger space of approximations. To this
end we used approximations consisting of Generalised Belief Propagation

12Eaton and Ghahramani, “Choosing a variable to clamp: approximate inference using
conditioned belief propagation”, op. cit.

13Minka and Qi, “Tree-structured approximations by expectation propagation”, op. cit.
14Mooij et al., “Loop corrected belief propagation”, op. cit.
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(GBP)15 on a fully connected binary pairwise factor graph with triangular
regions (regions of size 3).16 Each approximation was defined by a random
set of triangular regions, chosen to be non-singular.17 As models we used
factor graphs of 7 nodes with edge potentials drawn as exp(2W ), with W
a standard normal deviate. Figure 4.1 plots the results of playing the CG
between 16 random pairs of GBP approximations on each of 120 random
models; shown is the four-way score S4 and the difference in Llog

1 error.18

Figure 4.2 plots the same results but shows difference in L1 error instead,
illustrating that the S4 score is better at capturing relative Llog

1 error than
L1 error.

We will term the “agreement rate” of the CG against a certain error
metric as the rate at which the CG correctly identifies the approximation
with smallest error. This depends on the particular set of approximations
which are being compared (in our case, GBP with random non-singular
sets of triangular regions). The agreement rate can be estimated from the
fraction of points in the first and third quadrant in figure 4.1 and figure 4.2.
For Llog

1 error, the estimated agreement rate was 0.754. For L1 error, it was
0.639.

15Yedidia, Freeman, and Weiss, “Generalized belief propagation”, op. cit.
16For reliable convergence, our implementation used the algorithm of Heskes, Albers,

and Kappen (T. Heskes, K. Albers, and B. Kappen. “Approximate inference and con-
strained optimization”. In: Proceedings of the 19th Annual Conference on Uncertainty in
Artificial Intelligence. Vol. 13. 2003, pp. 313–320), which has the same fixed-points as
GBP. We ran it with a tolerance of 10−7.

17Welling, Minka, and Teh, “Structured region graphs: Morphing EP into GBP”, op. cit.
18Each point is also reflected about the origin.
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Figure 4.1: Four-way score vs difference in Llog
1 error for GBP
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Figure 4.2: Four-way score vs difference in L1 error for GBP

4.4.3 Comparison to code-length game

We next compare the effectiveness of the conditional game against another
simple game, a modification of the “code length game”.19 The outcome of

19F. Topsøe. “Information theoretical optimization techniques”. In: Kybernetika 15.1
(1979), pp. 8–27.
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the code-length game (CLG) is defined as follows:

max
p:
∑
x p(x)=1

min
κ:
∑
x e
−κ(x)≤1

Ep

[
κ+

∑
α

logψα

]
(4.31)

We have added the term
∑

α logψα to achieve the correct equilibrium for
the model. The standard interpretation of this saddle point is that one
player chooses a set of code lengths satisfying the Kraft inequality, while
another chooses a normalised distribution (P ) over symbols. The first player
wants to minimise the (modified) expected code length, and the second to
maximise it. The equilibrium is at p = eκ = P . Note that a sample from this
expectation (sign inverted) can be implemented by changing the behaviour of
CP in the CG so that he chooses a value randomly from his own distribution
R(xi| . . .) at each turn. This is not a good strategy for CP in the CG, since
in particular it ignores the marginals proposed by MP, but the CLG is a
simultaneous game, where each player is unaware of the other’s actions, and
so in that setting CP (i.e., the distribution player) should act randomly. If
the distribution player wants to do well in the CLG in expectation, then his
best strategy is to sample as described above. The expected value of the
game is

E[V ] = ER
[
log

Q∏
α ψα

]
(4.32)

= ER
[
log

Q

P

]
− logZ (4.33)

where Q is MP’s approximation. This is equal to − logZ if Q is exact, and
less than or equal to − logZ if R is exact. Switching roles and subtracting
game values yields a score, analogous to the S− difference score, which can
be compared to zero. The drawback of the CLG is that its outcome is
stochastic, and so one must average over many trials to get a score of low
variance. As a consequence, one might object that a comparison between
the CG and CLG is unfair. However, the CLG is the only other game of
this type, of which we are aware.

We want to show that the CG is better on average than the CLG at
discriminating the error of many similar approximations. For this we used
the same GBP approximations as in section 4.4.2 (parametrised by triangu-
lar region configurations) on the same distribution over models. We played
these approximations against each other in a “single-elimination tourna-
ment” (SET). Players are initialised at the leaves of a binary tree of uniform
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depth (here 8), and each node represents the winner of a game played be-
tween its two children. The “round” of a node is its distance from the leaves.
See figure 4.3.

The tournament was repeated with different methods of comparing ap-
proximations:

• conditional game (S4, S
+, S−);

• code-length game (averaging over 1, 3, and 8 runs);

• exact comparison (comparing actual error of approximations).

The “exact” method is shown only as a reference, as we are ultimately
interested in problems for which exact marginals are intractable.

The results are shown in figure 4.4. The error shown in this plot is av-
erage Llog

1 over variable marginals, averaged over all approximations in the
same round, geometrically averaged over 120 random factor graphs gener-
ated as above. In both cases one can see that S4 outperforms S+ and S−

by a small amount, while the code length game performs poorly. In both
cases, the slope of the S4 curve was close to half of the slope of the exact
reference curve.

Round 4

Round 3

Round 2

Round 1

Round 0

Figure 4.3: Schematic of the single-elimination tournament on a binary tree

It is interesting to see how the agreement rate, defined in section 4.4.2,
changes as a function of tournament round. For Llog

1 error and S4 score, the
agreement rates (averaged over all the approximations and all the graphs)
for tournament rounds one through eight are shown in table 4.4. There is a
downward trend for both games, which means that they are having a more
difficult time discriminating errors with each new round. This is consistent
with the usual state of affairs when a tournament is being played - it is easier
to predict the outcome of earlier matches than later ones, since the earlier
matches are more likely to involve an uneven pairing of players.
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Figure 4.4: Plot of Llog
1 error as a function of round, for tournament exper-

iment (round 0 omitted).

Round 1 2 3 4 5 6 7 8

S4 0.71 0.68 0.67 0.65 0.65 0.63 0.55 0.53
CLG 0.55 0.53 0.53 0.51 0.49 0.56 0.33 0.50

Table 4.4: Agreement rates vs Llog
1 error for S4 and CLG

4.5 Discussion and future work

We have described a technique for comparing two different approximations
to a statistical model. The only interface requirement for the approximation
algorithms is that they support variable conditioning, i.e. can give estimates
of marginals in a conditioned model where a variable is conditioned to take
a given value. Some algorithms which satisfy this requirement particularly
well are Belief Propagation20 and instances of Expectation Propagation,21

and GBP.22

The original motivation of this research was to explore ways of moving

20Pearl, “Fusion, propagation, and structuring in belief networks”, op. cit.
21Minka, “Expectation propagation for approximate Bayesian inference”, op. cit.
22Yedidia, Freeman, and Weiss, “Generalized belief propagation”, op. cit.
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beyond the dominant approximate inference framework, in which algorithms
are only able to express beliefs. It seemed that if one were to be more ad-
venturous, as a natural progression one might seek frameworks in which
algorithms are able to defend or modify their beliefs through dialog. We
decided that an appropriate prototype for such communication should be a
two-player game. This was supported partly by the observation that there
is no easy fitness function with which to measure the error of an approxi-
mation, but that relative comparisons (such as the code-length game) are
possible. We also noticed that two-player games already appear in many
places in machine learning, in the form of saddle points minx maxy f(x, y):
for example in the Convex-Concave Procedure,23 Tree-Reweighted Belief
Propagation,24 Boosting,25 and the EM algorithm.26

There is also a well-known (to formal semanticists) two-player game
which can be used to define the truth value of a formula in first-order logic.
The state of the game is a node in the syntax tree of the formula. Play starts
at the root. A “falsifier” chooses branches of conjunctions (AND clauses)
which he thinks are false, while a “verifier” chooses branches of conjunctions
(OR clauses) which he thinks are true. Upon encountering a negation, they
switch roles. (The falsifier and verifier can also instantiate the arguments
of ∀ and ∃ quantifiers, respectively.) The formula is true if and only if the
verifier can win.27 We find this game particularly interesting, although it is
not clear what kind of analogy best relates it to the conditional game.

Finally, we note that there is a body of literature which applies iterative,
message-passing-like algorithms to look for solutions of games which have a
graphical structure, called “graphical games”.28 We have not found a way
to make use of it here.

We have made preliminary attempts to harness the conditional game in
an approximate inference method, by using it to guide a kind of natural

23Yuille and Rangarajan, “The concave-convex procedure”, op. cit.
24M.J. Wainwright, T.S. Jaakkola, and A.S. Willsky. “Tree-reweighted belief propaga-

tion algorithms and approximate ML estimation by pseudomoment matching”. In: Work-
shop on Artificial Intelligence and Statistics. Vol. 21. 2003.

25Y. Freund. “Boosting a weak learning algorithm by majority”. In: Information and
computation 121.2 (1995), pp. 256–285.

26A.P. Dempster, N.M. Laird, and D.B. Rubin. “Maximum likelihood from incomplete
data via the EM algorithm”. In: Journal of the Royal Statistical Society. Series B (Method-
ological) 39.1 (1977), pp. 1–38.

27P. Lorenzen and K. Lorenz. Dialogische logik. Wissenschaftliche Buchgesellschaft
Darmstadt, Germany, 1978.

28M. Kearns, M. Littman, and S. Singh. “Graphical models for game theory”. In: Pro-
ceedings of the 17th Conference in Uncertainty in Artificial Intelligence. 2001, pp. 253–
260.
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selection between competing approximations. These are described in more
detail in chapter 6.

A fundamental drawback of the conditional game is that it requires a
complete traversal of all variables in the model, where the algorithm must be
re-run once for each variable. This is still faster than the presumably expo-
nential cost of exact inference, but would seem unsuitable for large real-world
models. One remedy would be to use approximate inference algorithms that
“compile” a model into a form by which conditional and marginal queries
can be executed quickly. An example of such an algorithm is described in
recent work applying Arithmetic Circuits29 to approximate inference.30

Ideally, it would be possible to devise a game which can be played locally
on the nodes of a graphical model, so that inference in different weakly-
coupled areas of the model can proceed asynchronously, together with co-
evolution towards locally superior approximations. It is not yet clear how
this could be done.

In conclusion, we have presented a novel game which can be used for com-
paring approximate inference algorithms in the absence of exact marginals.
We have shown that it has exact inference as an optimal strategy, and we
have proven theoretical bounds on its performance in the case where neither
player is exact. We have presented experimental results which demonstrate
its effectiveness in distinguishing inference algorithms on a graph of mod-
erate difficulty, the alarm graph. We have experimentally demonstrated its
superiority to another simple game, the code-length game, for the purpose
of comparing approximations based on GBP. We hope that this research
will help generate interest in applications, techniques, and formalisms for
approximate inference which extend beyond the current paradigm of simply
expressing beliefs.

4.6 Acknowledgements

The author would like to thank Iain Murray for useful discussions.

29A. Darwiche. “A Differential Approach to Inference in Bayesian Networks”. In: Pro-
ceedings of the 16th Conference on Uncertainty in Artificial Intelligence. 2000, pp. 123–
132.

30D. Lowd and P. Domingos. “Approximate Inference by Compilation to Arithmetic
Circuits”. In: Advances in Neural Information Processing Systems 23. 2010, pp. 1477–
1485.
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Chapter 5

Guided inference: a protocol
for learning to do inference

Abstract

We propose a protocol for modelling the exchange of advice between two
approximations to a statistical model. In our protocol a “student” adver-
tises marginal probabilities, and a “teacher” chooses an example state to
show to the student. The student observes the model’s unnormalised joint
distribution at the new state. This interaction is repeated over a number
of turns. We present results from experiments evaluating the ways in which
the teacher might choose states to show the student.

5.1 Introduction

One of the classical ways in which approximate inference can fail to produce
good marginals is by failing to find all of the modes - areas of high probability
- of a distribution. This is especially true for MCMC methods, which may
have difficulty in moving from one mode to another, but it is also true
for deterministic methods such as belief propagation, which does well on
distributions with one or two modes but not three or more.1

In this section we present the results from some experiments which are
designed to explore ways in which one approximation can “teach” another
about the modes (or other regions of interest) of a distribution. A more

1This phenomenon was observed while doing research for chapter 3, although we didn’t
mention it there.
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mature form of such a technology would facilitate the sharing of information
between approximations, for instance by making it easier to reuse work
between multiple MCMC runs. One might imagine a number of ways in
which such an interaction could take place, but we use a simple scenario, in
which the “teacher” shows the “student” examples consisting of states (full
assignments of all the variables) of the model. The student is allowed to
evaluate the full unnormalised joint at these states, but knows nothing else
about the model. We shall call this kind of interaction “guided inference”.

Teacher

(x∗, ZP (x∗))
−−−−−−−−−−−−→

Q←−−−−−−−−−−−−
Student

If the purpose of the conditional game is to be a protocol by which
approximations can “argue” about areas of disagreement, the purpose of
guided inference could be seen as a (very simple) protocol through which
these disagreements can be resolved.

The interaction cycle is formalised in the following pseudocode:

Algorithm 13. Guided inference
Repeat for an arbitrary number of turns:
At turn m:

1. Student proposes a distribution Q based on the example states and un-
normalised joints he has seen so far: {(x∗(i), ZP (x∗(i)))}i=1:m−1 (and
no other information about the model)

2. Teacher selects a new example point x∗(m) (perhaps in response to
errors in the student’s distribution)

Our model of interaction is based on the key simplifying assumption that
the only information which goes from the teacher to the student consists of
examples of states of the model. The student has access to unnormalised
joint probabilities ZP , but only evaluates them at the states recommended
by the teacher; hence it is also possible to imagine the values ZP (x∗) as
being transmitted by the teacher together with the states x∗, as in the
above diagram. This is meant to capture the extreme of passivity, where
the student knows the model specification, but (not knowing where to start
with his analysis) only performs computations when prompted with example
states received from the teacher. Importantly, the student does not get to
know any of the teacher’s opinions about the marginals or partition function.
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This means that the student is not limited by the accuracy of the teacher
(and could learn just as easily from multiple teachers as from one).

In an applied setting, the “teacher” and “student” might both be ap-
proximations, and the student would be an approximation Q of a kind which
can be parametrised by a set of states so that he learns to be more accu-
rate with every state (example) shown to him by the teacher. But we do
not yet concern ourselves with figuring out how an approximate student
should make the best use of these examples for learning. In this chapter
we restrict our attention to the question of how the teacher should choose
examples to present to the student. We are limiting ourselves, in other
words, to investigating one half of the guided inference problem, namely,
the teacher’s strategy. A practical application of the conclusions we de-
rive from our experiments would also require a solution to the second half,
namely, a specification of the student’s approximation.

Now, if we were to experiment in a setting with an approximate Q, then
it would be difficult to know whether to credit some property of the system
to the teacher’s or the student’s approximate inference algorithm (which we
are not particularly interested in) or to the teacher’s protocol for choosing
example points to present to the student (which is what we are interested
in). Consequently, in our experiments in this chapter we use two exact
inference algorithms. The inference of the “teacher” is simply exact, while
the student performs “exact” inference (combined with exact sampling) on a
simple distribution over models, conditioned to agree with the observations
of the unnormalised joint which the teacher has indicated to him.

A consequence of the preliminary nature of this research is that, as in
other chapters, we are constrained to study small models on which exact
inference is tractable. Our expectation is that these results will generalise
to larger models as well.

5.2 Prior work

In this section we relate our work to previous research in machine learning.
The problem of learning about a model by observing samples from some or
all of its variables is common to most branches of machine learning. When
some property of these samples is specified by the learner prior to sampling,
in order to optimise learning, then the process is called “active learning”2

(two related topics are “query learning” and “optimal experiment design”).

2S. Tong. “Active learning: theory and applications”. PhD thesis. Stanford University,
2001.

94



Chapter 5. Guided inference 5.2. PRIOR WORK

Active learning is perhaps the closest existing body of research to what we
are calling “guided inference”. Active learning can be employed to learn
the parameters or structure of a model, as with any other form of learning.
Typically, an active learner is allowed to specify values of some subset of the
variables in a model, and the rest of the variables are then sampled from the
true distribution conditioned on these assignments. Alternatively, a learner
may have access to a set of unlabelled data points, from which he is allowed
to select examples whose labels should be determined by an oracle. The
learner presumably chooses these examples in such a way as to optimise his
ability to predict labels for the rest of the data. Active learning can be seen
as a way of modelling a scientist, who tries to learn about a system of interest
by performing a series of experiments in which he constrains some aspects
of the system’s behaviour and measures the effects of such interventions on
other parts of the system.

Guided inference can be seen as a kind of active learning for inference. In
the framework of active learning, a learner is trying to learn about a model
given data points which are partly specified by the learner and partly drawn
at random from a “true distribution”. In guided inference, by contrast, the
model is considered to be fully specified and the learner is trying to learn
how to improve his approximation to this model. He does this by receiving
“interesting” states of the model from a “teacher” whose approximation he
wishes to emulate. The teacher of guided inference corresponds to the “true
distribution” of active learning. Whereas the states in active learning are
partly random and this randomness is used to learn about the probability
mass assigned by the model to different variable values, in guided inference
there is not necessarily any randomness in the states, and the behaviour of
the model at the example states is inferred from the unnormalised joint.

One area of similarity between our work in guided inference and existing
work in active learning is the use of a cost function to guide the choice of
new states. In active learning, the learner has a sense of the areas of the
model about which he would like to be more accurate. His preferences can
be expressed in terms of an expected gain for each possible query he can
make - perhaps he would like to minimise some form of entropy in his beliefs
about the model. In guided inference, the teacher is trying to improve some
measure of the student’s error, and might employ one of a number of cost
functions in deciding which state to show the student at each turn (see the
experiments section 5.4).

In the guided inference setting, since approximate inference algorithms
are doing the teaching and the learning, one way in which the teacher can
choose states for the learner is by playing the conditional game against him.
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The conditional game identifies at its conclusion a full configuration, or state,
which can be used for this purpose. We have already contrasted the guided
inference framework, which seeks to resolve disagreements between approx-
imations, with the conditional game, which seeks to identify and quantify
these disagreements. In our experiments, we will show that the conditional
game is suitable for use by the teacher in the guided inference framework as
well.

5.3 Distributions over models

In this section we describe how the “exact” student of our experiments
maintains and reasons about a distribution over models, given a set of ex-
amples from the unnormalised joint distribution ZP (x) =

∏
α ψα(xα). We

will restrict ourselves to representing distributions over the potentials of
fully connected binary pairwise factor graphs. (Thus, we do not consider
the problem of reasoning about models of differing structure, e.g. averaging
over multiple hypotheses which specify different sized factors or different
sparse connectivity.) We have the student represent the potentials of the
graph as exponentials of normal random variables, ψij(xi, xj) = exp(βW )
where W ∼ N(0, 1).

i

j

ψij(xi, xj) ∼ exp(βW )

(5.1)

Initially the potentials are believed by the student to be sampled indepen-
dently, but when he incorporates his set of observations of the unnormalised
joint {(x∗(i), ZP (x∗(i)))}i=1:m−1, then correlations will be introduced in his
beliefs. If he represents the log-potentials using a multivariate normal, then
the correlations can be represented in a covariance matrix for these quan-
tities, and after each observation the posterior of his beliefs will be in the
same class as the prior (i.e., it is a conjugate prior). The observations

z∗ = ZP (x∗) (5.2)
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are equivalent to

z∗ =
∏
jk

ψjk(x
∗
jk) (5.3)

log z∗ =
∑
jk

logψjk(x
∗
jk) (5.4)

The quantities logψjk(xj , xk) are distributed according to a multivariate
normal distribution with mean µ and variance Σ (indexed by (j, k > j, xjk)
and initialised to β2I) so this is a statement that some subset of the dimen-
sions of this normal distribution should have a certain sum (namely log z).
A set of such constraints is in turn a special case of a linear constraint, say

B · y = v (5.5)

on draws y from a multivariate normal, where B is a matrix and v a vector.
More specifically, in our experiments, y is indexed by (j, k > j, xj , xk) and
represents a vector of log potentials specifying the whole model, while B
contains entries which are 0 or 1 according to whether a particular po-
tential entry contributes to a given state, and v is a column vector of
the log unnormalised joint entries corresponding to each example x∗(i):
vi = log z∗(i) = logZP (x∗(i)).

Conditioning on this linear constraint is equivalent to transforming the
mean and the variance of the multivariate normal distribution:

µ′ = µ− ΣBT (BΣBT )−1(Bµ− v) (5.6)

Σ′ = Σ− ΣBT (BΣBT )−1BΣ (5.7)

Although there is an analytic form for the updates to the distribution
parameters in this case, there appears to be no analytic expression for the
expected marginals of factor graphs drawn from the distribution. So, when
such quantities are needed, we simply draw many sample graphs, compute
their marginals, and average together the results. This seems to be more
sensible in the log domain (soft-max) since some marginals may be very close
to 0 or 1. Averaging sampled marginals in the log domain is equivalent to
taking the geometric average and renormalising.

5.4 Experiments

In our experiments, we compare five different ways in which the teacher can
choose example states at which to update the student’s distribution over
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potentials. Below, ZP̃ (x) is a random variable representing a draw from the
student’s beliefs about ZP (x), and ZP̂ (x) represents an estimator, perhaps
obtained by averaging these beliefs.

• max true entry - States of the factor graph are chosen in decreasing
order of the true joint distribution at each state (the “entry” for that
state in the unnormalised joint table). In other words, only the states
of highest probability mass are shown to the student.

• max diff entry - At each turn, all states are examined and the
one at which the student’s unnormalised joint estimate (the geometric
average of the sampled models) is most different from the teacher’s

(exact) unnormalised joint is chosen. E.g. maxx

∣∣∣ZP (x)− ZP̂ (x)
∣∣∣

where ZP̂ (x) ≡ expE[logZP̃ (x)].

• conditional game - The student’s marginals (their geometric aver-
age, calculated by sampling) are used to play as MP in a conditional
game against the teacher’s CP. Whether CP is trying to maximise or
minimise the game outcome is decided uniformly at random before
each game. The state chosen by the game is used as the next example.

• uniform random - A state is chosen uniformly at random.

• max var log entry - The state is chosen at which the student is
maximally uncertain about the value of logZP (x), as measured by the
variance of this value over sampled models. I.e. maxx Var(logZP̃ (x))

Note that the first method (MTE) only uses information from the true
distribution (the teacher’s distribution), without ever querying the student’s
progress. The second two methods (MDE and CG) compare the true distri-
bution with estimates from the student’s distribution. The fourth method
(UR) makes no reference to either, and the fifth (MVLE) only uses infor-
mation from the student.

We tested the 5 methods (MTE, MDE, CG, UR, MVLE) on four different
models, all with 10 variables but differing in the variance β of the log-
potentials. We explored values of 0.5, 1, 2, and 3 for β. One useful way
to visualise the difference in the models produced by these values of β is
by making a Zipf plot of the entries in the joint distribution (this means
that the entries are sorted and plotted against their rank on a log-log scale;
additionally we normalised the values so that the largest is 1). See figure
5.1. The steeper the slope of the line, the more probability mass is placed
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on a few dominant states, rather than being spread out across many states.
A line with slope -1 has been included for reference.3
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Figure 5.1: Zipf plots for entries in the joint distributions of four typical
factor graphs, with reference line

For a fully-connected binary pairwise factor graph of n variables, there
are n(n+1)

2 parameters in the potentials, thus we expect most methods to
require 55 examples to learn our 10-variable example models completely.

The student’s distribution over models uses as a prior the same normal
parameters from which the true graph was generated. Using other param-
eters (including putting a normal prior on univariate factors ψi, and on a
scalar factor for the whole graph) did not produce substantially different
results, except for worsening the performance of MTE.

3A special case is the slope -1, which corresponds to a relationship P (x) = 1
r

where r

is the rank of the state x. Considering r to be continuous-valued, we note that
∫ 1

0
1
rα

dr
is ∞ if α ≥ 1, and

∫∞
1

1
rα

dr is ∞ if α ≤ 1. Only when α = 1 are both integrals infinite.
Thus α = 1 can be compared to a model where probability mass is fairly divided between
likely and unlikely states. From the plot, we see that the value β = 1 has a slope which is
close to -1 over the first decade, but decreases thereafter.
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5.5 Results

The results of running the five methods on each model are shown in figures
5.2 through 5.5. Each figure has three plots. The first plot shows how
the L1 error of the student’s marginals decreases as examples are shown
to the student; the second plot is the same, but showing Llog

1 error. In
both cases the student’s marginals are calculated by geometrically averaging
the marginals of 256 models drawn from the student’s distribution, and
renormalising. The third plot shows the variance in the student’s estimate
of the normalised joint - a series of draws are made from the student’s
distribution over models, and the normalised joint distribution is computed
from each draw. For each state, the variance of the joint at that state is
estimated (unbiased) from the samples, and these quantities are summed
over all the states. This “joint variance” is plotted as a function of the
number of examples, and is a measure of the student’s uncertainty about
the true model - in contrast to the other two plots, the joint variance is
calculated independently of the teacher. Thus, the joint variance is not
a measure of the student’s performance under a given protocol, but only
represents a quantity of interest which can be used to better understand
what is going on.

The plots demonstrate a number of consistent relationships between the
five methods. First of all we observe that CG seems to have the best overall
performance. For small β, CG sometimes performs slightly worse than UR or
MVLE, and for large β it sometimes trails MDE, but it is never far off from
being the optimal method. By contrast, there are conditions under which
each of the other methods performs unacceptably badly. This is perhaps
surprising, since most of the other methods (all except UR and perhaps
MTE) require examining every entry of the joint and would be prohibitively
expensive to implement on large graphs, except in some heuristic form. CG,
on the other hand, only requires conditioned marginals, which may be easily
obtained from most approximations.

Another interesting observation is that where CG and MDE are in close
competition on the error for the high β graphs, the “joint variance” tells
a different story. Although the error in students trained by CG and MDE
is approximately the same, the joint variance, which is a measure of the
student’s uncertainty, decreases much more quickly for MDE than CG. This
means that even though CG’s student is able to perform close to and some-
times better than MDE’s in error, this advantage comes in spite of his having
a greater uncertainty about his own beliefs. We can infer that the low error
of CG’s student was enabled by his having taken an average over models
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which were sampled from his relatively broader distribution. If, on the other
hand, he had only sampled a single model from this distribution, he would
have been likely to choose a model with high error.

MVLE is close to UR, although consistently better, and the distance is
about the same in L1 and Llog

1 plots. For small β, the CG follows these
methods closely, but for large β it begins to do much better.

MTE does surprisingly poorly, and even though the example states it
chooses are distinct it appears to be selecting linearly dependent sets of
them (perhaps which overlap in many variables) since it doesn’t reach zero
error after 55 examples. Strangely, for β = 0.5 and β = 1, MTE seems to
do fairly well at reducing joint variance even while failing to improve the
marginals.

Perhaps the most attractive feature of any of the methods is the way
MDE manages to achieve near-zero L1 error in marginals at just over half of
the examples required by the other methods for β = 2 and 3. It is the only
method with this desirable feature. It exhibits the same behaviour, but to
a much lesser extent, on β = 1; and not at all on β = 0.5.

The joint variance plots show some strange behaviour, for instance with
β = 0.5 the joint variance decreases at about the same rate for each of the
five methods, even though the marginal error curves of those methods are
reasonably diverse. This holds to a lesser extent for β = 1. Even in the high-
β models, the student’s own estimate of his uncertainty is a poor indicator
of his actual error.

A number of other methods for choosing examples were explored but
were found to perform poorly, and are not shown in the plots. The ap-
plication of the conditional game we used chooses randomly to have CP
maximise or minimise the result; if we eliminate the random choice and se-
lect each point with CP only maximising or only minimising, then the error
does not decrease (in some instances the same state is chosen repeatedly).
Choosing an example at random from the exact distribution performs about
as well as UR, as does choosing a random state from a model drawn from
the student. Choosing a state by selecting the variable and value with the
largest Var(

∑
x\i
ZP̃ (x)), conditioning the variable to that value and recurs-

ing, works about as well as MVLE. Having the student’s MP use marginals
from a sampled ZP̃ rather than an averaged estimator ZP̂ gave worse per-
formance, as did using arithmetic rather than geometric averaging of the
marginals.

In summary of the above results, we would say that it is surprising that
the CG method seems to be the best approach to guided inference, consid-
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ering the separate purpose for which it was designed. We were unable to
find a method which does uniformly better, even considering those methods
which required examining every state in the teacher’s and student’s approx-
imation. One might be tempted to conclude that the most efficient mode of
interaction between a teacher and student, at least in the protocol we have
defined, is (as in the real world) that of having an argument.

5.6 Discussion and future work

In the next chapter, we consider the application of simulated evolution to
approximate inference. The broader goal of such applications is, as always,
to create more efficient approximate inference algorithms. We argue there
that suitably flexible approximate inference algorithms should work by sim-
ulating a kind of natural selection where candidate approximations are made
to cooperate and compete so as to evolve approximations of higher accuracy.

Although we don’t make direct use of the results of this chapter in the
next one, the present investigations were to some extent motivated by hav-
ing anticipated such applications of the CG. When one considers a context
for interactions in which approximations are made to compete using games,
but also to cooperate by sharing information, the question arises of the re-
lationship between these two modes of interaction: Is it (a) possible for
an approximation to do well in competitions as a result of having “secret
knowledge” which he never has to share with his colleagues? Or (b) does the
hidden expertise which allows one approximation to outperform another get
revealed as soon as we arrange a competition between them? In case (b),
our task of deriving a useful interaction framework would be considerably
simplified, by the sufficiency of a single form of interaction to accomplish
the goals of both (competitively) comparing and (cooperatively) educating
approximate inference algorithms. In case (b) there would also be an in-
trinsic motive for each party to participate in such interactions - the winner
receives the prestige of winning, while the loser receives useful training. It
is of course always possible for an evolutionary framework to provide such
motives artificially, by some deliberate innovation of the design, but surely
we should prefer such motives to arise as a natural consequence of the in-
teraction itself. We were therefore pleased to discover through the simple
experiments presented here that, at least to good approximation, the second
case indeed holds - the same competitive interaction (i.e., the CG) accom-
plishes both comparison and education.

There are some discernible directions in which this research could be
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extended. Apparently, for the ideas presented here to become practically
useful, at some point it would be necessary to replace the unrealistic exact
inference methods used in these experiments with a suitable approximate
inference algorithm, one which can be parametrised by states of the model
so that it can “learn” from the CG. And as discussed in the previous chapter
(in section 4.5), we would like to be able to complete a round of interaction
without traversing every variable in the graph. This would be necessary,
for instance, if one wanted to conduct a guided-inference-style interaction
on only part of a large graph. Finally, the ideal application for guided
inference is within some kind of framework for simulated evolution, which
we consider in greater detail in the next chapter. Fitting together all of
these ideas is likely to be a difficult problem, but the findings of this chapter
might encourage us to hope for an elegant solution, one in which multiple
design goals are satisfied by the same design element.
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Figure 5.2: Plots showing error and joint variance as a function of example
count on a random graph with β=0.5
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Figure 5.3: Plots showing error and joint variance as a function of example
count on a random graph with β=1

105



Chapter 5. Guided inference 5.7. ACKNOWLEDGEMENTS

0

0.
2

0.
4

0.
6

0.
81

0
10

20
30

40
50

60

MarginalError(L
log
1)

E
x
am

p
le
s

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0
10

20
30

40
50

60

JointVariance

E
x
am

p
le
s

0

0.
2

0.
4

0.
6

0.
81

0
10

20
30

40
50

60

MarginalError(L1)

E
x
am

p
le
s M

T
E

M
D
E

C
G

U
R

M
V
L
E

M
T
E

M
D
E

C
G

U
R

M
V
L
E

M
T
E

M
D
E

C
G

U
R

M
V
L
E

Figure 5.4: Plots showing error and joint variance as a function of example
count on a random graph with β=2
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Figure 5.5: Plots showing error and joint variance as a function of example
count on a random graph with β=3
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Chapter 6

Evolutionary experiments

Abstract

We are interested in algorithms that produce better approximations to a
statistical model. Ideally, we should be able to build a system that outputs
more accurate approximations over time, much like sampling algorithms do,
so that we can obtain within any given time constraint an approximation
which is close to the “best possible” for that particular model and that
particular constraint. This would be an example of an anytime algorithm.

In implementing such a system, it would presumably be useful to have
a method for comparing two approximations, like the conditional game. In
chapter 4, we showed how to use the conditional game in a single-elimination
tournament to select an approximate inference algorithm from among an ini-
tial population of candidates. This process could be used to construct an
anytime inference algorithm by identifying a sequence of improving approx-
imations from a stream of input candidates. The problem with the tourna-
ment method is that it is apparently very wasteful, since it never combines
two good approximations but only throws away the losing one. In this chap-
ter we integrate the conditional game with ideas from Genetic Algorithms
and biological evolution in an attempt to remedy these shortcomings. The
result is a kind of anytime algorithm. Although the performance of our algo-
rithm is not competitive with standard inference algorithms on the models
we employ, the outcome of these investigations can be seen as establishing
first of all to what extent concepts from Genetic Algorithms can be usefully
applied to our problem. Another contribution is a brief exploration of the
best strategies for selecting “mates” and producing “offspring” in this evolu-
tionary setting. The discussion section examines at length several potential
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improvements to the GA approach which might lead to a more systematic
and usable exploitation of these ideas in the future.

6.1 Introduction

We would like to consider the problem of optimising the quality of an ap-
proximation. We start with the observation that the nature of interesting
yet computationally difficult problems makes them ideal candidates for par-
allel processing, which means that they can be broken up into smaller pieces
to be solved independently without too much intercommunication. Thus,
for instance, the definition of the “difficult” complexity class NP invokes the
idea of a computer with arbitrary parallelism. Presumably, the subproblems
which arise out of an attempt to solve a given problem should inherit some-
thing of that problem’s nature - if it is difficult, they should be difficult; if it
is a problem in approximate inference, perhaps we can also expect them to
be problems in approximate inference. The question of how this subdivision
of labour should be carried out is closely related to the question of how to
combine the solutions resulting from each sub-problem, and hence leads to
the subject of this thesis: a general investigation into the ways in which it
is possible to combine multiple approximations.

We would like to have an “anytime algorithm”, which is an algorithm
that outputs gradually-improving approximations the longer it is allowed
to run. This definition includes any algorithm that can be tuned to trade
time for increased accuracy - every time it finishes, simply rerun it from
the beginning with successively more stringent requests for accuracy. The
most important part of an anytime algorithm, in other words, is not its
“streaming” interface, but its ability to trade time for accuracy. Sampling
algorithms like Gibbs sampling, or MCMC methods in general, conform
to this definition by outputting a sequence of marginals which converge to
ground truth. But there is no reason not to consider a more sophisticated
system, which might output a sequence of decompositions or parametrised
algorithms, like region configurations for GBP, giving rise to marginals of
increasing accuracy.1 A straightforward approach to the problem of how to
effectively combine anytime approximations leads us to consider “evolution-
ary” simulations.

1This accuracy would of course eventually be limited by the class of approximations
considered, as it is in our experiments.
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Cooperation and competition At this point, we have enumerated three
different ways of combining approximations, which fall into two categories:

• Cooperation: by partitioning a model among multiple approxima-
tions (chapter 3), or by allowing two approximations to share infor-
mation (chapter 5)

• Competition: by comparing the accuracy of two approximations
(chapter 4)

In chapter 4, we used the CG in a single-elimination tournament (SET)
to choose a winning approximation from some initial population. The SET is
a very general approach which can be applied to a stream of input candidates
to produce a sequence of approximations whose expected accuracy improves
over time, resulting in an anytime algorithm for inference. But it is very
slow - it is exponential in the number of rounds played, and the accuracy
of the winners of each round improves only gradually with time. Part of
this inefficiency is due to the way the tournament combines approximations,
by keeping the winner and throwing away the loser. Ideally we would be
able to salvage some of the work which was used to produce this losing
approximation, by somehow merging its best qualities with those of the
winner, forming a kind of cooperative interaction. In the simple SET setup,
with competition but no cooperation, we found it was impossible to produce
a good approximation efficiently.

On the other hand, if we restricted ourselves to using only cooperative
methods of combining approximations, with no competition, we would be
stuck with anytime algorithms that output a single sequence of approxi-
mations, not being able to compare these approximations with those from
possible alternative sequences to notice if an alternative might at some point
become superior. An example of a “cooperative” algorithm which produces
a sequence of approximations is CBP of chapter 3 - CBP gives a sequence of
approximations as we increase the depth of the condition tree, obtained by
partitioning a model for cooperative solution between successively smaller
sub-models. Other examples are provided by many of the standard approx-
imate inference algorithms - for example MCMC, where a sample can be
seen as a crude approximation, and averaging sample statistics as a kind
of cooperative combination of these approximations. In several of the ex-
periments in chapter 3 (see figure 3.3, e.g. lower right plot) the accuracy of
Gibbs sampling was found to overtake that of CBP after a certain amount of
time, even though CBP started out ahead. Selecting the best approximation
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from between the two sequences at each instant would necessitate some way
of comparing approximations, which we see as a form of competition.

In the preceding two paragraphs, we have argued that neither competi-
tion in the absence of cooperation, nor cooperation in the absence of com-
petition, is sufficient to produce an algorithm with the kinds of properties
we desire. It seems that we are compelled to investigate algorithms which
unify cooperation and competition.

Simulated evolution We would argue that the idea of solving difficult
yet parallelisable optimisation problems with methods that combine sub-
problems using cooperation and competition naturally leads us to consider
various analogies to evolution. Because such problems are parallelisable,
one may imagine that they are being solved by a “population” of coexist-
ing threads or subproblems. The use of cooperation implies some kind of
sharing of information, as in Mendelian inheritance or other forms of com-
munication between individuals or groups. The use of competition implies
that such communication is being regulated by a process of selection, so
that the propagation or survival of a unit of information depends on some
measure of its fitness relative to the rest of the computation. These three
elements - a population, the inheritance of some kind of information, and
competitive selection - form the ingredients of natural selection and evolu-
tion (biological or social) as it is usually understood. As a consequence of
these arguments, we will refer here to problem-solving approaches which use
both cooperation and competition as simulated evolution, whether or not
an analogy to the “real world” is made explicit. Researchers have devel-
oped a broad range of optimisation strategies based on simulated evolution,
both with and without biological motivation, most of which are identified
with the field of Genetic Algorithms (GAs). Although these strategies have
met with mixed success and are reputed for being inefficient in practice, we
hope that our line of reasoning has demonstrated to the reader that the
basic idea of simulated evolution arises quite naturally and even necessarily
in response to problems such as approximate inference, which are difficult
yet parallelisable (NP). The failures of the field of GAs should not, in other
words, cause it to be considered as an impractical area of investigation mo-
tivated exclusively by hand-wavy or romantic analogies to nature, any more
than the early failures of AI should make us consider approximate inference
as a toy problem without practical relevance.

On the contrary, we think it is clear that any sufficiently intelligent
computer system must have characteristics which enable us to interpret it

111



Chapter 6. Evolutionary experiments 6.2. BACKGROUND: GENETIC . . .

in terms of some kind of simulated evolution. Whether it is productive to try
to design such a system by taking the existence of such an interpretation as a
starting point for the exploration and elaboration of its other characteristics
we know not, but in this chapter we adopt the working hypothesis that it
is.

Contributions In what follows, we review the basic GA framework and
show how it can be applied to approximate inference using the CG. We
do not attempt to apply the techniques of chapters 3 or 5 for cooperative
interaction, but restrict ourselves to a simple random “crossover” operator
following the traditional GA approach.

Next, we present the results of experiments measuring the performance
of the system we have developed, and discuss the effects of changing different
aspects of the implementation.

Finally, we present our conclusions and propose areas for future work.
Although our simulations were not able to achieve good performance, we
ascribe this disappointment to shortcomings in the traditional GA approach.
We examine several potential remedies. First we discuss how we might be
able to harness the types of cooperation explored in earlier chapters (instead
of just using “crossover”), and then we explore analogies to the real world
which could guide us in developing a better framework.

6.2 Background: Genetic Algorithms

In the design of our evolutionary simulations, we take as a starting point
the field of Genetic Algorithms,2 under which most such research has been
conducted.

GAs embody a class of techniques for solving difficult optimisation prob-
lems, based on an idealised model of evolution in biological organisms. In
the typical GA setup, a fixed-size population of agents competes to optimise
a fitness function. Each agent is defined by a piece of data called a genotype.
The fitness function is a real-valued function of an agent’s phenotype, which
is in turn a function of its genotype. The agents try to optimise their av-
erage fitness by reproduction which involves creating new agents from pairs
of parents (combinations of more than two parents could be used, but usu-
ally aren’t). The genotypes of offspring are determined by applying two
operators to the parent genotypes:

2J.H. Holland. “Adaptation in natural and artificial systems”. In: Ann Arbor MI: Uni-
versity of Michigan Press (1975).
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• mutation - The mutation operator applies random mutations to a
genotype

• crossover - The crossover operator combines two genotypes to pro-
duce a third, typically by selecting “genes” at random from one or the
other input genotypes

In addition to these two operators, an application of genetic algorithms
must specify how “mates” are chosen to produce new offspring at each “gen-
eration”. A typical strategy lets each agent reproduce; in tournament selec-
tion, for each agent i, for each generation, two potential mates are chosen
randomly from the population, and the one with the higher fitness is used
to produce an offspring with i. In this way, the probability that an agent
will be chosen as mate is 2k−1

(n−1)2 where k ∈ {1 . . . n − 1} is the rank of the

agent within the rest of the population of size n.3

A method for removing agents from the population must also be speci-
fied, for instance by retaining only the n fittest individuals at each genera-
tion.

GAs are commonly criticised for being a slow approach to optimisation,
but seem to apply well to very difficult problems such as the travelling
salesman problem, for which no easy solution is thought to be possible in
general (because it is NP hard). GAs are said to be based on a simplified
view of biological evolution, but can also be seen as being derived from
nothing more than some common-sense principles based on the properties
we would like to have in an algorithm which attempts optimisation over a
complex fitness landscape. In particular, we should want such an algorithm
to (a) consider a number of possible candidate solutions, to (b) explore the
space in the region of each candidate, and to (c) consider combining the
best attributes of different solutions to produce new solutions. The GA
approach should be regarded as an attempt to guarantee these properties in
the simplest possible framework.

6.3 The CG and relative fitness

The chief difficulties we encounter in applying the ideas of GAs to an opti-
misation process guided by the conditional game stem from the fact that the
CG doesn’t give a single-argument fitness function by which to evaluate the

3A more common strategy in GAs are fitness proportional selection which chooses each
individual with a probability proportional to his fitness; we do not employ it here.
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“absolute” fitness of an approximation (and in fact the original motivation
of the game arose from our desire to be able to easily compare approxima-
tions in spite of the fact that such a function is intractable). Rather, the
game provides an “approximate relative” fitness function which can rank
two individuals for accuracy - “approximate”, because the ranking only ap-
proximately reflects the relationships which we are interested in, for instance
between marginal errors.

Adapting the GA methodology to use such a relative fitness4 rather
than absolute fitness is straightforward. For example, in the “tournament
selection” strategy described above, the only use made of the absolute fitness
values is to compare them against each other, and this comparison can
simply be replaced by running the CG. There is no intrinsic need for a
consistent ranking to result from the comparison.

The availability of only a relative fitness function is related to what the
GA literature calls “population-dependent fitness functions”, in which the
fitness of each individual is additionally made dependent on the rest of the
population.5 Under certain conditions, including that of the existence of an
individual which has maximal fitness in every possible population, one is
able to prove convergence results for GA-style evolution with a population-
dependent fitness.6 The fact that exact inference is an optimal strategy for
the CG equates to a slightly more general condition, but may still allow us
to make similar theoretical guarantees.

We don’t attempt such an analysis here, since we are more interested in
actual performance. As for the idea of population-dependent fitness, we pre-
fer our model of games played between individuals as more straightforward.
The naive approach of computing such a fitness function by comparing each
individual against each of the other individuals, for instance by playing the
CG against all of them in turn, would seem overly expensive; yet the stan-
dard remedy, which uses a random subset of the population as an approxi-
mation to some “ideal” population-dependent fitness function,7 could simply
be expressed in terms of the game itself. In other words, a two-player game
seems both simpler and more general than a population-dependent fitness

4We will omit the word “approximate” and just write “relative fitness” in the future,
since non-approximate relative fitness functions induce the same total ordering as some
absolute fitness function.

5L.M. Schmitt. “Theory of genetic algorithms”. In: Theoretical Computer Science
259.1-2 (2001), pp. 1–61.

6Ibid., Theorem 8.5, p. 49.
7C.D. Rosin. “Coevolutionary Search Among Adversaries”. PhD thesis. University of

California, San Diego, 1997.
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function in practice.
At first sight, evolution with relative (or population-dependent) fitness

is somewhat closer to the actual process of natural selection, at least as
envisioned by Darwin, than is evolution with an absolute fitness function.
In natural selection, choice of mate is governed by criteria that are a function
of the environment in which the offspring will live, which is in turn largely
a function of the rest of the population. Natural selection is often described
as a process by which pairs of individuals compete with each other for food
sources or reproductive opportunities. Their success, in other words, is
determined more as the outcome of a game between two players than as an
absolute ranking of individuals. In this view, we could say that evolution
proceeds not inexorably “towards” any predetermined goal, as it would if
there were an absolute fitness function, but only away from the present state
and in a direction determined by the outcome of these competitions. The
progress of scientific research has been compared to such a process.8

Although a relative fitness function is arguably more natural than an ab-
solute fitness function (according to the biological analogy), it causes some
problems in the present context of optimisation via simulated evolution. In
situations where there is an absolute fitness function, it is possible to guar-
antee that the average fitness always increases, since we can be sure to never
replace an agent with one that is less fit. With a relative fitness function,
this is no longer the case. Since a relative fitness function only gives an ap-
proximate ranking of individuals, we may find that their actual (absolute)
fitness, as measured by a function which is not in general computationally
tractable, fluctuates over time.

For example, it may be that as a population evolves, the average (ab-
solute) fitness improves, but the population loses the ability to compete
against a certain type of individual with lower (absolute) fitness; at some
point one of these individuals may then appear and outcompete the rest of
the population before the ability to counter it is recovered, causing a sudden
drop in average fitness. In the GA literature, this is related to the problem
of forgetting in coevolutionary simulations, in which previously successful
individuals are lost because the members of the other population against
which they were able to compete suffered extinction. An example of this
phenomenon is given by the interactions within the immune system between
lymphocytes and parasites: without some special memory mechanism, the
immune system might lose the ability to recognise a parasite which it had

8T.S. Kuhn. The structure of scientific revolutions. University of Chicago press, 1970,
Ch 8, p. 171.
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managed to eliminate - in the absence of the selection pressure which that
parasite had once exerted on the population of antibodies. In the exper-
iments which we present below, we hope to gain a sense of the extent to
which our application of the CG to evolutionary simulations is burdened by
issues such as these.

6.3.1 Effect of interaction topology

One particular phenomenon to which we devote our attention is the effect
of varying the topologies according to which agents are allowed to interact.
The reason we used a SET with binary tree topology to evaluate the CG
in chapter 4 was that its behaviour is easy to analyse - each game is played
between two players who are drawn independently from the same distribu-
tion over players. As long as the game’s agreement rate (defined on page
85) is above one half, the average error of the players at each level should be
an improvement with respect to those of the previous level. Even when the
wrong player wins at round n, this only introduces an element drawn from
the distribution at round n− 1, rather than from the initial distribution.

By contrast, if we were to pick the best player using a linear-topology
SET, i.e. by playing each contestant in turn against a “reigning champion”,
then the quality of the resulting “champion” will be reset to a draw from
the initial distribution each time the game chooses the wrong winner. Thus,
the linear interaction topology seems more prone to a kind of “backsliding”
of fitness. The two topologies are contrasted in figure 6.1.

Round 4

Round 3

Round 2

Round 1

Round 0

(a) Binary-tree topology (b) Linear topology

Figure 6.1: Diagrams of two tournament topologies for 16 players

In lieu of a more careful analysis we can see from a simple experiment
that the binary tree topology is more efficient than the linear topology for
the SET on our toy models. The results of the averaging the winner’s
error for tournaments with 2n players on binary trees, compared to linear
tournaments with the same number of players, for n = 1 to 8, is shown in
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figure 6.2.
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Figure 6.2: Comparison of winners of binary tree tournament and linear
tournament. Averaging over 120 random graphs, of 7 nodes with pairwise
factors sampled as exp(2W ). Average errors are plotted for the winners of
tournaments on 2n players, with n = 1 to 8.

We will say more about this in section 6.6.1, but it is apparently better to
conduct optimisation via simulated evolution using topologies that segregate
the agents into a number of isolated “ecologies” with only occasional cross-
interaction, than to devote the entire population to a single arena where
agents are able to compete promiscuously. Note that with an absolute fit-
ness function, the observed difference between the binary-tree topology and
the linear topology disappears. With an absolute fitness function, in either
topology the contestant with the highest fitness wins. This highlights a
difference, which shows up in the absence of mating, between the absolute
fitness setting of traditional GAs and our relative fitness setting. In our
setting, topology matters even without mating. Topology only has conse-
quences in the traditional setting when mating is taken into account. For
example, topology influences the order in which crossover operations take
place, which may have various effects on the gene pool. In our setting, inter-
action topology plays the additional role of preventing cross-contamination
between parallel experiments.

6.4 Implementation

We examine three different selection and mating strategies. Each one as-
sumes a population of constant size. Also, note that each one requires four
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runs of the CG per reproduction, which simplifies the comparison of different
strategies.

• paired competition - At each step, two distinct individuals are
selected at random and play the CG (computing a 4-way score S4). A
child is produced by cross-over of the two genotypes, and replaces the
loser.

• suitors - At each step, a “princess” and two “suitors” are chosen
at random (without replacement). The princess plays the CG against
each suitor as CP, first minimising and then maximising the game
value. The difference between the two resulting values is used as a
score to rank the suitors, and the single offspring of the princess with
the winning suitor (produced by crossover as above) is used to replace
the losing suitor.

• directed crossover - At each step, a pair of distinct individuals is
chosen and the CG is played between them (again, computing S4).
At each turn of each of the four games, the two approximations will
tend to report different conditioned marginals for the same variables.
These differences are quantified and accumulated. Thus each variable
becomes associated with a number measuring the total disagreement,
over the course of the four games, between the two players’ conditioned
marginals for that variable. These numbers are used to select GBP
regions containing variables with high disagreement. Some of these
regions are then chosen at random and copied from the winner to the
loser.9

9This might be seen as an attempt to implement a sort of transfer of acquired charac-
teristics, see section 6.6.2. The implementation is very ad-hoc, but we specify the details
just for completeness. Say the “disagreement” of a variable i in a particular run of the
game is given by the ratio of the marginals for the CP and MP at x∗i ; this is what is being
minimised or maximised by CP in the choice of i and x∗i recommended by in equation
4.12. It may be greater or less than 1 as CP is maximising or minimising. The absolute
value of the logarithm of this value, summed over all four runs of the game, is called
the score of the variable. A variable j is chosen randomly with probability proportional
to this score. A region from the winning player which contains variable j is chosen at
random and added to a list, in a loop which starts and repeats with probability 0.7 (so
the list has a probability 0.3 of being empty, 0.21 of having 1 element, 0.147 of having
2 elements, etc.). The list is appended to the list of regions of the losing player minus
those regions containing j, and to the result is appended a random permutation of the
regions from the losing player which do contain j, followed by a random permutation of
all possible regions. A maximal non-singular set of regions is chosen from the final list by
adding allowed regions in order of traversal (as in the crossover operation below).
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In our simulations, we use a set of triangular regions (regions of size 3) in
a GBP approximation to define the genotype of an agent. The permissible
region sets were limited to be non-singular (NS)10 and were maximal subject
to this constraint11. We chose to enforce this constraint of non-singularity
because it makes GBP more well-behaved; in particular, it is equivalent to
demanding that GBP have only one stationary point when the factors are
made uniform. It is straightforward to prove by induction that the number
of triangular regions in a maximal NS set in a binary pairwise factor graph
of n nodes is

(
n−1
2

)
= (n−1)(n−2)

2 , out of a total of
(
n
3

)
= n(n−1)(n−2)

6 possible
regions. Thus for a random initial population of much more than n

3 indi-
viduals, we expect each triangular region to appear at least once with high
probability. On account of this property, it did not seem necessary to use
a mutation operator, which otherwise might be needed to encourage more
complete exploration of the space of region configurations. In our case, any
given configuration could arise via a series of applications of the crossover
operator described below. To validate this intuition, we did experiment with
a mutation operator for the paired competition strategy and the results were
poor (figures 6.5 and 6.9).

The crossover operator (only used in the first two strategies) is defined
as follows. Two “parent” region configurations are merged to produce a
single “offspring” configuration. The difficult part is making sure that the
offspring’s configuration is NS. Start by creating a list L containing the
union of the two parent region sets, in randomised order. The output C
of the crossover operator is constructed by starting with the empty set and
adding regions from L one at a time, skipping those additions which would
result in a singular C.

We explored two interaction topologies. The “full” topology imposed no
constraints and chose mates and suitors randomly from among the popu-
lation. The “ring” topology considered the members of the population to
be arranged in a cycle, and only allowed interactions between adjacent in-
dividuals. Interaction on the ring topology took place between individuals
at locations 1 and 2 in the first generation, followed by 3 and 4 in the next
generation, . . . , then n − 2 and n − 1, n and 1, 2 and 3, etc. In this way,
each individual interacted alternately with each neighbour. For the suitors
strategy on the ring topology, the pairs of suitors were chosen in this way
but the “princess” was chosen at random from the rest of the population.

10Welling, Minka, and Teh, “Structured region graphs: Morphing EP into GBP”, op. cit.
11A set of triangular regions in a pairwise graph is non-singular if it is empty, or if at

least one graph edge is contained in exactly one region and removing this region from the
set leads to a non-singular set of regions.
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6.5 Experiments

6.5.1 Methods

We tested the above evolutionary simulation on 10 randomly generated bi-
nary pairwise graphs of 7 variables with normally-distributed log-potentials
(i.e., potentials drawn as exp(W ) where W is a standard normal deviate).
For factor graphs of this topology, there are 35 possible regions of size 3,
and any maximal non-singular set consists of 15 regions. We ran each of
the various strategies starting from random initial populations of size 7, 15,
31, 63, and 127. The marginals, used for playing the CG and for recording
Llog
1 error, were of the GBP approximation, calculated using the libDAI12

implementation of HAK13 with tolerance 10−7.
To assess the progress of a simulation, we use the average error, cal-

culated by averaging (arithmetically) over the population the average Llog
1

error in variable marginals (measured against exact marginals) for the esti-
mates produced by each individual’s set of regions. This population-average
error is then averaged geometrically over the 10 factor graphs. The result is
plotted as a function of the iteration number, except in figure 6.6 where the
individual graphs are shown separately. The iteration number, labelled as
“games” in the plots, is the same as the number of “steps” or “generations”
or instances where an offspring is produced, which, in the implementation,
technically requires four runs of the CG (to compute the four-way score, or
to compare suitors).

The error curves in the first four figures have been smoothed using gnu-
plot’s “csplines” interpolation for readability. All experiments were run to
5000 games.

6.5.2 Results

Here we present the results of our experiments in a series of plots.
In figure 6.3, we compare the performance of the “paired competition”

strategy among different population sizes and between the two different
topologies. The performance of the binary-tree SET is shown for reference:
the vertical position of each SET data point indicates the average error over
the players found at a given round, and the horizontal position indicates
games played (i.e. 2round−1).

12Mooij et al., libDAI 0.2.5: A free/open source C++ library for Discrete Approximate
Inference, op. cit.

13Heskes, Albers, and Kappen, “Approximate inference and constrained optimization”,
op. cit.
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Figure 6.3: Performance of “paired competition” strategy, with different
sized populations, compared with single-elimination tournament using four-
way score. Left plot is using ring topology, right is full topology. The vertical
axis shows average Llog

1 error.

We notice that if we shift each evolution curve by 1
population , so that the

horizontal axis measures games divided by population size, then the curves
tend to overlap (the resulting plot, not shown, is not very informative). The
general rule seems to be that larger populations are slower to improve, by
a factor corresponding to the population size. Thus, if individuals were to
reproduce in parallel, this disadvantage would go away. However, the error
of large populations decreases further before reaching equilibrium, so they
eventually overtake the smaller populations. This is evident where popula-
tion 7 is overtaken by population 15 in both plots. On the full topology plot,
one can also see the point where population 15 is overtaken by population
31, at around 2000-3000 games.

The full topology lines reveal an inferior performance (except for popu-
lation 7) than those of the ring topology, and they tend to level out sooner.
This seems to be a result of diversity decreasing too quickly in the full topol-
ogy (we give further evidence to support this conclusion starting on page
126).

The tournament line shows a better performance than the evolutionary
simulations at first, but is later overtaken by them for population sizes ≥ 15.
We find this encouraging for our evolutionary approach, since one of its
objectives was to outperform the single-elimination tournament.

Next, we compare the three mating strategies - paired competition, suit-
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ors, and directed crossover - using four different population sizes and the
ring topology (figure 6.4). There is no clear winner, but “paired competi-
tion” seems to converge to a better solution than “suitors” (in population
7 and 15) and decreases more quickly than the other strategies in the two
larger populations.
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Figure 6.4: Comparison of the three different evolutionary strategies, using
the ring topology, for four different population sizes. The plot for a popula-
tion size of 127 resembles that for 63. The vertical axis shows average Llog

1

error.
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Figure 6.5: Variations on paired competition: full topology, and mutations.
Population 15. For the mutation run, at every crossover, with probability
1
2 a new randomly-chosen region was added to the output configuration (at
the expense of an existing region).

In figure 6.5, we show the results of the experiment in which a mutation
operator is included. This operator takes the following form: at each repro-
duction, during crossover, with probability 1

2 , a random region is added to
the head of the list L from which the set of offspring regions C is generated (L
and C are defined in section 6.4). The specification of this operator is based
on what appears to be a standard rule of thumb in GAs, which says that
the optimal mutation rate is about one bit per genome per generation.14 We
can see that the performance of the mutation operator simulation matches
the performance of the mutation-free simulations at below 100 games, but
afterwards it seems to stop decreasing and settles into an area with high
error. The mutation operator was only simulated with the full topology and
not the ring topology, but as shown on the plot, the results of corresponding
simulations without mutation are similar for both full and ring topology.
Hence it seems reasonable to infer that the mutation operator would have a
similar performance on the ring topology. We did not investigate whether a
smaller mutation rate might be more successful.

14T. Bäck. “Optimal mutation rates in genetic search”. In: Proceedings of the Fifth
International Conference on Genetic Algorithms. 1993, pp. 2–8.
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Figure 6.6: Plots of population average Llog
1 error curves for 10 individual

factor graphs, for 4 different population sizes. All simulations use the ring
topology and paired competition strategy. The geometric average of per-
model errors is shown in the thick line.

In order to give a sense of the different kinds of behaviour which are
found in different simulations, in figure 6.6 we show the individual curves
for simulations on each of the 10 factor graphs. The geometric average of the
per-model errors is shown in the thick line. Here it is much more apparent
that the decrease in average error is not monotonic, as it would be with an
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absolute fitness function. One can also see the need to use geometric mean
rather than arithmetic mean in the earlier plots, because the errors of the
various models deviate from each other by almost an order of magnitude.
Had the arithmetic mean been used, the results would be dominated by
characteristics of the models with highest error.

One can see that for the smaller population sizes, in many runs the
population converges to copies of identical individuals prior to the 5000
game endpoint. This is also shown distinctly in some of the plots below,
which include a quantity representing population diversity: refer to figures
6.7, 6.10, 6.11, 6.15, 6.16, and 6.17.

The next 11 plots show more detailed results for individual simulations.
The title of each plot lists the selection strategy, topology, and population,
followed by the number of the factor graph (1-10) in round brackets. These
plots don’t use the smoothing which is present in the other plots, so it is
possible to see more distinctly what is going on. Each plot is split vertically
into three sections. The top section shows curves representing the minimum
(thin black line), maximum (blue line), and average (thick black line) error,
and also the error of the “mode” or most common genotype (with ties broken
arbitrarily; red line). The middle plot, labelled “Accuracy”, shows a running
average (exponential with decay rate 0.05) of the agreement rate, i.e. the
rate at which the game is able to correctly identify the more accurate of two
approximations according to the average Llog

1 error. The bottom plot shows a
measure of the diversity of the individual regions or genes in the population
(bottom curve) and of the sets of regions or genotypes (top curve). The
genotype diversity is measured as one minus the probability that two random
individuals will have the same genotype. The gene diversity is the same
quantity, which is to say, one minus the probability that two random regions
taken from random members of the population will be the same, but shifted
and scaled so that the minimum possible value is zero and the maximum is
one (since it is not possible for the population to contain only one gene, or
to have no duplicate genes, unlike the situation with whole genotypes).

The gene diversity measure is useful for showing when certain regions
become more dominant as the genotypes converge to a single genotype. For
instance, in figure 6.7, which plots a directed crossover simulation, we can
deduce that at around 3000 games there are only two distinct genotypes in
the population, differing by a single region, but it takes 1000 games before
one of them becomes extinct, presumably by adopting the correct region
from the other. The game accuracy line shows us that the proper individual
is always winning during this period. From the minimum error curves, we
can see that individuals have existed in the population with small error
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but have gone extinct, and the simulation has converged to a sub-optimal
solution, even though somewhere between 1000 and 2000 games, according to
the mode curve, these were the most common genotypes in the population.
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Figure 6.7

The behaviour shown in figure 6.7 is worse than that found in most of
the other directed crossover simulations; a more typical example is shown
in figure 6.8.
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In figure 6.9 we can take a closer look at the mutation experiment. There
is a big difference between the minimum and maximum error. According
to the diversity curve, there is a spot just before 3000 games where the
population seems to be converging to one genotype, but then the diversity
rebounds.
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Figure 6.10 shows problematic behaviour which seems to afflict the “full”
topology. Good results discovered around game 100 are forgotten (minimum
error curve) and at the end there is a long stretch (between 1000 and 3000
games) where diversity fluctuates without converging. The behaviour of a
simulation on the same model but with ring topology, shown in figure 6.11,
is much better. This supports the earlier speculation that sparse topolo-
gies reduce “contamination” effects between different groups of individuals
(recall the discussion in section 6.3.1, and the experiment shown figure 6.2).
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Figure 6.11

Figure 6.12 shows another simulation where, according to the diversity
curve, the population seems to be converging to a single genotype with low
error, but bounces back to a situation with more diversity. Note that as
in figure 6.10, the gene diversity remains low while the genotype diversity
fluctuates.
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Figures 6.13 and 6.14 show examples with higher populations. One can
see that there is a good separation between the average, minimum, mode,
and maximum error lines. Unfortunately, we did not continue these higher-
population simulations to convergence.
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Figure 6.15 shows an example with low population. The genotype diver-
sity line shows a fairly rapid decrease prior to convergence.
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Figures 6.16 and 6.17 show two “suitors” simulations. In the first, the
minimum error increases over time, and in the second it decreases.
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6.5.3 Conclusions

We have applied ideas from genetic algorithms to the problem of optimising
over the space of approximations to a probabilistic model. We explored three
selection strategies, two interaction topologies, and five population sizes, and
compared the results of evolutionary simulations with these parameters to
the results of the SET described in the previous chapter. Even though
they were not expected to be competitive with practical approximate infer-
ence algorithms15, the evolutionary simulations still manifested a decrease
in error over time. In addition, for every population size except 7, the evo-
lutionary simulations were able to outperform the tournament (figure 6.3).
This is a worthwhile finding, since one goal of our evolutionary simulations
was to overcome the basic limitation of the tournament approach (which
never combines two good results). And it is also a robust finding: since
the tournament has no parameters or alternate implementations, we can be
sure that it is impossible to modify it to do better. On the other hand, the
tournament does better than evolution for small numbers of games, which
suggests that it should be possible to improve the evolutionary simulations
so as to create an algorithm which delivers the best of both worlds.

It is somewhat disappointing that the error curves for most simulations
only decrease by about a factor of 2 per decade in the steepest sections
(e.g. from 100 to 1000). For sampling methods, in which error improves as
1√
n

, the corresponding rate is just a factor of
√

10 ≈ 3 per decade. Our rate

of improvement of error is thus closer to 1
3√n than to the 1√

n
of sampling. We

are not aware if the 1
3√n law applies to other classes of approximation than

GBP. We note that the accuracy of our simulation is limited by the accu-
racy of GBP with triangular regions, so unlike with sampling methods the
error does not converge to zero. If our framework were modified to include
approximations with unbounded region size then obviously this drawback
could be overcome (since including a region with every variable results in
an “exact” GBP) but the competition would then involve approximations
of different time complexity, requiring us to invent a way to appropriately
penalise slower approximations.

We found that errors achieved by large populations decrease more slowly
than those for small populations, but descend further; and that sparse in-
teraction topologies are more effective than dense ones. This suggests that

15It takes about 20 seconds to run the CG with HAK on a seven-node factor graph, on
a 2.4 GHz CPU, and we did this 5,000 times per simulation; but exact inference can be
performed in milliseconds.
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preserving diversity is an important element in achieving good results. On
the other hand, using mutation was not found to be an effective way to do
this.

There were a number of observed behaviours which we did not fully un-
derstand. It would be possible to devote time to analysing the simulations
more carefully, to try to achieve a practical grasp of the reasons why, for
example, the minimum error rate might not have decreased in a particular
simulation. It is not obvious whether it would be more productive to do this,
or to undertake new simulations of different topologies or selection strate-
gies, or to try to obtain a better theoretical description of our algorithm. So
far, the experiments we have performed have succeeded in demonstrating
that the naive application of GA techniques to approximate inference using
the CG is feasible and that the results are for the most part well-behaved,
even if too time-consuming to be of practical use. In the next section we
suggest that in order to achieve significantly better results, more fundamen-
tal changes to the GA framework will be necessary. For this reason, we have
limited the scope of our experimental analysis to include an account only of
the more high-level phenomena, which one might hope to remain relevant
even across radical changes to the algorithm.

6.6 Discussion and future work

Our evolutionary simulation experiments were successful in achieving one of
their basic goals - to demonstrate the possibility of using such simulations
to create an anytime approximate inference algorithm. They also estab-
lished the superiority of evolutionary methods to tournaments, which never
share information cooperatively between two different approximations via
operations such as crossover. They succeeded in demonstrating a number
of qualitative relationships between different parameter settings, selection
strategies, and interaction topologies, which we might hope to be able to in-
form future research in this area. Although viewed as an inference algorithm
these simulations are not at all practical (and in fact showed an inferior con-
vergence rate to sampling methods, at about 1

3√n), yet we might hope that

such a simple and compelling idea could somehow be salvaged and improved
upon, or perhaps incorporated into a more sophisticated algorithm which
overcomes these limitations.

In such a future algorithm we might try to find a way of implementing
some of the improvements proposed at the end of the chapter 4. Certainly if
we could understand how to avoid playing the conditional game to comple-
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tion, then a good deal of computational expense could be saved, especially
on large graphs, and in particular when playing against each other two ap-
proximations which only differ in a certain portion of the graphical model.
With such a modification, it might also be possible to localise agents to dif-
ferent parts of a graph, so that evolution can proceed in parallel when some
groups of variables are only weakly coupled. How one should modify the
CG to support such partial games is not clear. Given access to an estimate
of the partition function of a conditioned model, one can easily derive an
estimate of the optimal value of a game which has been played part way, for
instance only the first k turns:

V ≈ log

∏k
i=1 qi(x

∗
i )

Z̃|x∗1:k

where Z̃|x∗1:k is a conditioned partition function estimate. But one also needs
to specify who should provide this estimate - whether it is one or the other
of the players or a third party - as well as who can decide when to stop
playing and under what circumstances they should do so. Furthermore, the
benefit of such an optimisation would be limited if each player still privately
maintains a full approximation of the entire graph. One would rather want
to have “partial players” - each specialising in only part of the graph - play-
ing partial games, which would imply some kind of intimate relationship
between the specifications of players, the approximations they entail, the
games they play, and also the ways in which these games affect their evo-
lution. These requirements are somewhat difficult and leave a great deal
unspecified, but they summarise our vision of how a practical approximate
inference algorithm could be built using the simulated evolution concept.
Since a partial game is defined by a real number and a “partial assignment”
(PA), discussed on page 68 in the context of conditioned belief propagation,
one can see how these ideas are related to those described there involving
cooperative evolution and PAs.

Leaving aside the question of the finer details of players and interac-
tions, we can identify some broader concerns which were brought into focus
by the experiments and seem to apply to evolutionary systems in general,
especially those with relative fitness functions like the CG. Before trying to
build a more streamlined evolutionary framework, with specialised games
and players interwoven as suggested above, one might want to investigate
these more general issues carefully and try to understand their implications
and possible solutions. Otherwise, one might for instance design a good
competition which produces bad results because it is being played between
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the wrong players on the wrong field. We conduct such an investigation in
the next few subsections.

6.6.1 Regulating interaction topology

We argued in section 6.3.1 that it is important to keep an appropriate
amount of segregation between agents in an evolutionary simulation. We
supported this argument by comparing the error of approximations selected
using SETs on two different topologies: the binary tree topology introduced
in chapter 4, and a linear topology. We concluded that the binary tree
topology, representing an extreme of segregation, was superior. In the evo-
lutionary simulations, we also observed that the sparser, “ring”, topology
was superior to the fully connected topology (at least on the statistical
models we used). From these observations it is clear that some degree of
segregation, i.e. sparsity in interactions, significantly improves performance.

We can think of two forces which might give sparsity a beneficial effect
on evolution. First, sparsity promotes diversity, allowing a simulation to
concurrently explore multiple areas in the space of approximations. Second,
sparsity limits the level of “contaminating” exchange between individuals at
different stages of evolution, which might result in a regression of fitness in
situations where the wrong player wins a game. Because of the behaviour
of the CG, for example as characterised by Theorem 12, the potential for
contamination is low when one group has much smaller error than another:
the first group will win almost all of the games. One imagines that excess
interaction would be more of a problem early in development, where a change
leading to a small improvement might be lost before it can evolve into a large
improvement.

While we must recognise the value of sparsity, we also note that simulated
evolution eventually outperformed the single-elimination tournament. We
conclude that the extreme of segregation, as represented by the binary tree
SET, was not optimal. Better performance was achieved with some level of
mixing, which was in fact the whole purpose of the evolutionary framework.
Thus, there is a happy medium to be sought between segregation and inte-
gration. How should we locate this optimal degree of interaction sparsity?
For an answer to this question, in the tradition of Genetic Algorithms, we
might consider looking to illustrations from biology and natural selection.
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6.6.1.1 Biology and Genetic Algorithms

The situation where different groups of individuals exist in relative isolation
to each other and experience only infrequent interactions is familiar from
nature. Isolated ecosystems such as found on islands, and various other
ecological niches, are often home to rare and highly specialised animals.
Different continents are home to different classes of animals. For example,
elephants and giraffes are not found in the wild in South America, even
though habitat exists which could support them there. Occasionally a non-
native species introduced by humans into a new area does very well, which
shows that geography can act as a real barrier to exchange between different
ecologies. Such barriers must exert a non-negligible influence on the progress
of evolution, since otherwise we would find similar creatures everywhere.

Speciation seems to rely either on isolation or on the existence of different
ecological niches to fill. Birds, for example, despite not being significantly
isolated from each other, in fact display great diversity. We can, however,
account for this by observing that they occupy different niches, having dif-
ferent food sources, predators, and patterns of migration. When a niche
provides only a single source of food, and is not partitioned into isolated
regions, then a single species will tend to fill it. A good example is Antarc-
tic krill, which is estimated to comprise the greatest biomass of any animal
species on the planet. These shrimp-like animals feed only on phytoplank-
ton, and are kept in contact with each other by circulation of waters around
Antarctica. Although krill display some very impressive adaptations, it is
plausible that their monolithic niche may not be conducive to the evolution
of more advanced behaviours. In the same vein, it is easy to imagine that
much of the evolution of species such as primates would not have been possi-
ble if the Earth had only a single continent, undivided by rivers or mountain
ranges.

The problem of regulating interaction topology has long been recognised
in the field of Genetic Algorithms as having fundamental importance. How-
ever, often the intermediate goals of promoting diversity and preventing
fitness regression are addressed more directly. We review some standard
approaches to all of these problems, and offer comments and criticisms for
each one.

Promoting diversity is most often achieved with fitness sharing16 in

16D.E. Goldberg and J. Richardson. “Genetic algorithms with sharing for multimodal
function optimization”. In: Proceedings of the Second International Conference on Genetic
Algorithms on Genetic algorithms and their application. L. Erlbaum Associates Inc. 1987,
pp. 41–49.

137



Chapter 6. Evolutionary experiments 6.6. DISCUSSION AND FUTURE WORK

which the fitness of each individual is divided by a number quantifying its
similarity to other individuals in a population; or crowding17 in which new
individuals replace genetically similar ones. A third method is assortative
mating,18 in which mate selection prefers individuals with similar genotypes,
so that diverse subpopulations can coexist. These methods are simple and
no doubt useful, but create problems of their own. They all regulate di-
versity by direct comparison of genotypes, which seems unnatural - lacking
biological analogy, and raising the question of how to measure the signifi-
cance of a particular set of differences between two genomes. On the other
hand, humans and other animals do use phenotypic markers in selecting
mates, and it may be useful even if unpleasant to approximate such be-
haviour artificially with genotype comparisons until we can understand why
and how it arises through natural selection.

Regression of fitness is encountered in coevolutionary models. A canon-
ical coevolutionary model is based on a simple view of the immune system,
in which antibodies compete to recognise microparasites, which compete to
evade antibodies. Such models have for instance been applied to machine
learning, where antibodies represent classifiers and parasites represent exam-
ples to be classified. A typical method for avoiding fitness regression in such
models is the hall of fame, in which the fittest individual from each gener-
ation is preserved indefinitely, while still being allowed to produce offspring
in future generations.19

The hall of fame method seems promising but leaves us wondering: how
to control the accumulation of immortalised individuals, whether being the
fittest individual in a given generation is a good criterion for entry, and how
to avoid preserving many similar individuals. It is also difficult to apply to
our case in which it is expensive to determine the “fittest” individual, and
not even obvious how to best do so. We experimented with (but did not
present the results of) similar methods which keep track of the number of
games that an agent has won, and use this record to decide who the agent
is allowed to mate with or how often it mates. We were not able to achieve
much more compelling results with such methods than the ones we have
presented earlier.

We also mention a specialisation of fitness sharing to the coevolutionary
framework, called competitive fitness sharing - essentially, each parasite is

17K.A. De Jong. Analysis of the Behavior of a Class of Genetic Adaptive Systems. 1975.
18L.B. Booker. “Improving the performance of genetic algorithms in classifier systems”.

In: Proceedings of the 1st International Conference on Genetic Algorithms. 1985, pp. 80–
92.

19Rosin, “Coevolutionary Search Among Adversaries”, op. cit.
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treated as an independent resource to be shared by antibodies that defeat
it.20

The more general problem of interaction topology is addressed by the
island model, in which subpopulations exist on islands and interact only
occasionally.21 Studies have explored ways of automatically adapting the
interaction rates in this model. Lardeux22 proposes a technique for the
automatic adjustment of probabilities for moving between islands, in which
a transition probability is incremented by a fixed amount when an individual
is found to have an above-average fitness, according to which islands his
parents came from. This is a promising and creative approach. Again, we
do not have an efficient way to detect “above-average” fitness, but could
consider doing this incrementing for the winner whenever a game is played.
It is difficult to think of an analogy for Lardeux’s process in biology, but
nonetheless it may be worth experimenting with it in simulation. It is not a
complete solution to our regulatory problem, however, in particular since it
introduces new fixed parameters such as the size and connectivity of islands,
and the amount by which migration probabilities should be modified at each
generation.

There are no doubt some stimulating ideas in the GA literature. It is
sometimes difficult, however, to see which aspects of the methods are arbi-
trary and ad-hoc, and which follow from necessity. There may be a tendency
when building upon such immature ideas to adopt a particular technique not
because it is powerful and general but because it has been tried before and
this provides a certain amount of safety to the researcher. The work in
this chapter was produced largely in ignorance of the GA literature, with
only Mitchell’s book as background.23 On the other hand, such preexisting
research is useful in that it provides some common vocabulary and basic
tools.

All of the methods we have described introduce new parameters into the
simulation which must themselves be optimised. There is no doubt that in-
corporating some of these methods would yield performance improvements.
Yet not even combining all the methods together could be expected to bridge
the gap between what we have done so far, and what would constitute a

20Ibid.
21P.B. Grosso. “Computer simulations of genetic adaptation: Parallel subcomponent in-

teraction in a multilocus model.” In: Dissertation Abstracts International Part B: Science
and Engineering 46.7 (1986).

22F. Lardeux and A. Goëffon. “A Dynamic Island-Based Genetic Algorithms Frame-
work”. In: Simulated Evolution and Learning (2010), pp. 156–165.

23M. Mitchell. An introduction to genetic algorithms. MIT press, 1998.
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practical inference algorithm. On the other hand, they would complicate
analysis of the simulation results by introducing, through these new param-
eters, extra and poorly-justified sources of variation.

What we would like to have is a way to simplify the simulation, by
automatically determining certain parameters or by adjusting them as we
proceed. We are particularly interested in automatic regulation of popula-
tion size and interaction topology.

Some techniques for doing this regulation are proposed in the field of
GAs. The dynamic islands method of Lardeux, which we discussed above,
does regulate interaction topology, although in a way which depends on ex-
tra parameters and which is unsuitable for our purposes. A paper by Harik
and Lobo24 proposes autodetection of good population size by simulating
infinitely many power-of-two sizes in parallel, devoting four times as much
time to population sizes which are half as large (so the infinite series con-
verges) and terminating smaller simulations when a larger population has a
better average fitness. This is again an interesting idea (similar to Hutter’s
“fastest and shortest algorithm”25) but introduces the problem of how to
determine average fitness in our setting, and doesn’t tackle the problem of
regulating interaction topology.

6.6.1.2 Disease model

We can look to examples from nature to see how interaction topology (a
function, for example, of population density) and population size might
be automatically regulated to optimise the evolution of biological organ-
isms. Although some of the most important events in evolutionary history,
for instance the diversification of placental and marsupial mammals after
the Cretaceous-Tertiary extinction event, may have hinged upon large cata-
clysms such as asteroid impacts; and although the most apparent features of
interaction topology are accidental (the shape of continents, the geography
of mountain ranges and rivers, etc.) it is doubtful that the kind of regulation
we seek could depend on such accidents on a year-to-year basis.

The populations of some species may be limited by the availability of
food, or by the overabundance of predators. But the most universal and
material limitation on population size and density appears to be the price

24G.R. Harik and F.G. Lobo. “A parameter-less genetic algorithm”. In: Proceedings of
the Genetic and Evolutionary Computation Conference. Vol. 1. 1999, pp. 258–265.

25M. Hutter. “The fastest and shortest algorithm for all well-defined problems”. In:
International Journal of Foundations of Computer Science 13.3 (2002), pp. 431–443.
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of diseases.26 There are many locations, particularly in temperate climates,
where large areas of fertile land exist that cannot be used by humans because
of the overabundance of local diseases, such as malaria.27 These diseases
evolve at a certain rate which is determined by the number and density of
available hosts. Here is the essential principle:

The more hosts, the faster the diseases evolve, the more energy
is spent by the immune system of the host in keeping up, and
the shorter the life expectancy of the host.

The implications of this process stand in opposition to a common belief,
which is that to “get” a disease means only to be infected by a member of
its species. In fact, we seem to be exposed to many potentially dangerous
species of microparasites on an everyday basis, without getting ill. The im-
portant factor in illness seems not so much the species of microparasite to
which we are exposed, but how far its strain has been able to evolve since
our immune system last adapted to it. The most common example is in-
fluenza, which is constantly in global circulation yet only occasionally evolves
quickly enough to kill large numbers of people.28 A less well-known example
is bubonic plague, whose causative agent, the bacillus Yersinia pestis, is en-
demic in rodent populations in much of the Americas, in Southeast Asia, and
in Africa, but only very rarely makes people ill.29 The low plague mortality
in most decades is more readily explained not by the hypothesis that people
never come into contact with rodents, but rather that they are immune to
strains in circulation. For another example, syphilis caused widespread suf-
fering (even in monasteries), with horrific flesh-eating symptoms, when first
introduced to Europe in 1494.30 Many historical epidemiologists were sur-

26W. McNeil. Plagues and people. Jeffrey Norton, 1975.
27McNeil, Plagues and people, op. cit.; M.J. Echenberg. Black death, white medicine:

bubonic plague and the politics of public health in Colonial Senegal, 1914-1945. James
Currey, 2002.

28D.J. Smith et al. “Mapping the antigenic and genetic evolution of influenza virus”. In:
Science 305.5682 (2004), p. 371; C. Langford. “The age pattern of mortality in the 1918-
19 influenza pandemic: an attempted explanation based on data for England and Wales.”
In: Medical history 46.1 (2002), p. 1; E.D. Kilbourne. “Influenza pandemics of the 20th
century”. In: Emerging infectious diseases 12.1 (2006), p. 9; K.D. Patterson. Pandemic
influenza, 1700-1900: A study in historical epidemiology. Rowman & Littlefield Totowa,
NJ, USA: 1986.

29McNeil, Plagues and people, op. cit.; EG Pryor. “The great plague of Hong Kong”.
In: J Hong Kong Branch R Asiat Soc 15 (1975), pp. 61–70.

30A. Cunningham and O.P. Grell. The Four Horsemen of the Apocalypse: religion, war,
famine, and death in Reformation Europe. Cambridge University Press, 2000; McNeil,
Plagues and people, op. cit.
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prised when the bacteria causing syphilis was discovered to be of the same
species as that causing yaws, a mild skin disease, endemic to Europe, which
could be easily transmitted by handshake.31 Only the strain - presumably
having evolved separately in the New World - was different. The interesting
fact that yaws became much less prevalent after the appearance of syphilis
can be explained by assuming that the immune system reacts similarly to
both diseases.32 Conversely, recent evidence on the New World side of the
“Columbian Exchange” suggests that microparasites such as tuberculosis
were already present in the Americas prior to the arrival of relatively more
devastating strains from Europe.33 These examples collectively demonstrate
that the concurrent coevolution of hosts and ages-old (rather than newly
emergent) disease-causing microparasites plays an important role in pan-
demics and disease-related mortality, and is closely associated with popu-
lation density and migration, and other forms of contact between distinct
populations. Previous research has also recognised the importance of dis-
eases in guiding natural selection34 and of promoting diversity (at least in
plants35).

Such observations bring to mind the immune system model of GAs,
which we mentioned earlier. In the immune system model, lymphocytes
(or hosts) and parasites coevolve to recognise and evade each other, respec-
tively.36

To our knowledge, the present problems of regulating interaction topol-
ogy and population size are not seen in the GA literature as being any more
tractable in the immune system or other coevolutionary frameworks as com-
pared to the standard single-population framework. One relevant concept
from GAs is that of “balance”, which proposes that the rates of evolution
of parasites and lymphocytes should be roughly matched.37 Heuristics have
been proposed to ensure balance, which include adaptively allocating more

31McNeil, Plagues and people, op. cit.
32Cunningham and Grell, The Four Horsemen of the Apocalypse: religion, war, famine,

and death in Reformation Europe, op. cit.
33W.L. Salo et al. “Identification of Mycobacterium tuberculosis DNA in a pre-

Columbian Peruvian mummy”. In: Proceedings of the National Academy of Sciences of
the United States of America 91.6 (1994), p. 2091.

34J. B. S. Haldane. “Disease and evolution”. In: Ric. Sci. Suppl. A 19 (1949), pp. 68–76.
35J.J. Burdon. Diseases and plant population biology. Cambridge University Press, 1987.
36Rosin, “Coevolutionary Search Among Adversaries”, op. cit.; V. Slavov and N.I. Niko-

laev. “Immune network dynamics for inductive problem solving”. In: Parallel Problem
Solving Nature. Springer. 1998, p. 712; J. Paredis. “Coevolution, memory and balance”.
In: International Joint Conference on Artificial Intelligence. Vol. 16. 1999, pp. 1212–1217.

37Paredis, “Coevolution, memory and balance”, op. cit.
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generations to one or the other population. Although our simulation, based
on the CG, could have been structured as a coevolution between two types
of player (MP and CP), thus fulfilling the immune system framework, we
chose to adopt a single-population approach because the specification of
both players takes the same form, namely it is an approximate inference
algorithm. Yet it would be good to keep in mind the possibility of using
such a multi-species framework in future work.

In the meantime, there seems to be nothing in the existing GA research
which is able to model the desired regulatory effect of diseases. Although
we don’t present a fully-specified model of our own in this “future work”
section, we would like to describe some principles below which might outline
such a model’s behaviour and guide its development.

Recall that our original motivation for examining the effect of diseases
in the “real world” originated from a desire to better understand how one
might automatically regulate interaction topology in simulated evolution,
with the goal of maintaining an appropriate level of diversity and limiting
regression of fitness.38

In taking a closer look at the interaction between diseases and evolution,
we first observe that diversity can have a protective effect against diseases.
This effect has been recognised in biology.39 The operating mechanism seems
to be that although it is common for microparasites to infect multiple differ-
ent species or sub-species, it is usually the case that they are better adapted
to one or the other of these sub-species. As a result, diversity of hosts limits
the scope of potentially severe infections to a particular subset of the pop-
ulation. We also suggest that diseases evolve most quickly when there are
high rates of active infection, as for instance during a pandemic; whereas,
on the other hand, when infections are spread across many subspecies but

38Here we are talking about utilising disease for a particular purpose: controlling the
parameters of an evolutionary simulation. In this role, with regard to the optimisation of
fitness, diseases would occupy a position secondary to that of the main simulation. But
note that, if we imagine that the fitness of our individuals is defined not by some external
criterion but by their ability to fight microparasites, as in the GA models of coevolution
in the immune system, then apparently in such cases diseases could also interact with
these goals directly, and not just through the intermediary of interaction topology. Of
course, a model which combines in this way the goals of fitness and health would still
need a mechanism for individuals to die as a result of “sickness” in order for diseases to
have the required regulatory effect on sparsity. It may be worth trying to resolve these
simple questions for the sake of obtaining a more powerful and streamlined framework.
The discussion below applies to both settings, in which diseases are single-purpose or
dual-purpose, but assumes the first because it is simpler.

39F. Keesing et al. “Impacts of biodiversity on the emergence and transmission of in-
fectious diseases”. In: Nature 468.7324 (2010), pp. 647–652.
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only achieve severity in one of them, then disease evolution as a whole will
proceed more slowly. Since we have postulated disease burden to be tied to
the rate of evolution of disease, it follows that a diverse population will have
a lower disease burden than a uniform one.

We have previously argued that diseases should promote diversity - by
restricting population density - and now we have argued that, on the other
hand, diversity limits disease incidence. These two mutual influences give
rise to a second-order differential equation, with cyclic behaviour. We can
describe the cycles of this system qualitatively, by dividing them into four
phases, which we have illustrated in the diagram below.

In the first phase (at the top of the diagram), a population has low
diversity and lives in a single large community, which promotes the evolution
of disease.

In the second phase, the high disease burden causes population density
to decrease, and isolated islands to emerge.

In the third phase, populations in these islands evolve, but their isolation
makes them take divergent evolutionary paths, thus increasing diversity and
lowering disease burden.

In the fourth phase, the lower disease burden increases population (and
population density), so that there is more contact between subpopulations.

As a result of this contact, diversity decreases, and the cycle repeats.
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This is an interesting self-regulating system, and although it still contains
free parameters to quantify the relationships between disease and diversity,
perhaps these can be combined into a single parameter describing the fre-
quency of the cycle.

We also note that these cycles which we have elucidated can operate in
parallel when there are multiple species, and on multiple levels of a system
at once when species can be organised into a taxonomical hierarchy or when
diseases are more or less local in their circulation.40

Similar cycles can also be envisioned at a political or economic level.
William McNeil’s popular work on the interactions between microparasites
and human populations also outlines a parallel discourse involving “macropar-
asites”, which is to say, empires, governments, and other large institutions.41

Such actors may play an important role in preserving diversity by regulating
the interactions of their subjects. To incorporate such additional regulatory
structure in our simulations, it may be useful to consider the purpose and
dynamics of both macro- and micro-parasitic systems together.

To our knowledge, artificial or natural models based on the principles
we have just described have not yet been proposed in print.

Although we have only made a cursory search, we are not aware of any
research in evolutionary biology which recognises our proposed “disease-
diversity” cycle.

In the GA literature, there have been a number of published experiments
with immune system models, coevolutionary models, and “island models”,
but these generally adopt a fixed population and have not been combined in
the manner we envision for the automatic regulation of interactions between
agents.

One criticism of our proposal is that automatic regulation does not imply
optimal regulation, and we have not explained why the sparse population

40Note that in the simplest form of this model there is no need for restriction on the
movement of diseases between subpopulations; diseases can be the same everywhere. In
the real world, although many parasites have global circulation, such as influenza, there are
also parasites which evolve in more isolated subpopulations, and it may be useful to model
diseases with different levels of localised diversity. The basic principles we have outlined
apply to either case. But in the more realistic version, it is clear that low population
density reduces disease evolution not only by increasing diversity but also by slowing the
rate of spread of disease. This is related to the likelihood that susceptibility to disease
is itself a trait which can be selected for or against. Higher susceptibility might give a
host the advantage of a more up-to-date immune system, even as it hurts his neighbours
by subjecting them to greater disease burdens, resulting in a kind of prisoners’ dilemma.
The presence of more localised diseases could enforce cooperation in such a game.

41McNeil, Plagues and people, op. cit.
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structure which results from the action of transmissible diseases should also
happen to be an optimal one from an evolutionary standpoint. To answer
this, imagine that disease susceptibility, a natural parameter through which
we can tune the influence of diseases on evolution, is a trait that can be
selected for. We discussed other aspects of variable disease susceptibility
in the previous footnote. Although the subject is a complex one, we can
see that, on the surface of it, populations with a sub-optimal susceptibility
should, as a result of evolving more slowly than their neighbours, eventually
be overtaken and assimilated. Thus, to rough approximation, there should
be a selection pressure towards the optimal amount of disease susceptibility.

There may in fact be better ways than the biological analogies we have
advanced, in which to reduce the number of free parameters in evolutionary
simulations and to increase their autonomy. But whether this “parameter
problem” is solved through our method, or somebody else’s, we feel that
it is an important subject for future research. It is difficult to imagine
systems for approximate inference based on artificial evolution becoming
efficient without having first solved this problem. And one expects that an
approach similar to ours, based on looking at the world around us, should
lead to valuable insights. After all, the biological evolution which (as we
would argue) produced humans, should also have produced, through the
same process of natural selection, sophisticated mechanisms to simplify its
task and shorten the time it takes to achieve its goals.

6.6.2 Modelling somatic selection

The subject matter of this section, a theory of evolution associated with Jean
Baptiste Lamarck, has remained controversial among evolutionary biologists
for over one hundred years. Although relevant to the study of Genetic Al-
gorithms, like the rest of section 6.6 it can be omitted without detracting
from an understanding of this chapter’s research results. Readers who find
themselves displeased by subjects of controversy or scientific debate are en-
couraged to skip ahead to section 6.6.3.

In the previous section, we proposed ways of addressing shortcomings in
the naive approach which is taken by the traditional GA framework to the
choice of population size and interaction topology. In this section, we suggest
improvements upon the traditional, naive approach to crossover and muta-
tion. Recall that crossover and mutation are the operators which, in the
traditional GA framework, are used to construct the genotype of an individ-
ual from those of its two parents. These are modelled on a dominant view
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of evolution and genetics called “Modern Evolutionary Synthesis”. Here we
discuss an alternative description of evolution, and discuss how it might be
applied to GAs.

6.6.2.1 Football

By way of introduction, let us describe an analogy between biological evolu-
tion and the formation of teams in some competitive sport such as football42.
Football teams are comprised of eleven players, and are themselves members
of divisions or leagues. At the very lowest level of play are neighbourhood
teams or amateurs. As teams become more skillful, they can move up a
division, attract a larger audience, start to earn enough income to have a
full-time coach, and spend more time practising. They will start to compete
against teams from distant localities. With enough success, perhaps just
before reaching the top national division, a team will be able to attract a
sponsor and become fully professional.

Football teams derive some of their income from advertising, by wearing
the logo of a commercial sponsor when they play, and some income comes
from ticket sales. Winning or losing only affects income indirectly through
these channels. Teams can trade players, but only during specified months,
so we can see that there are mechanisms to limit their interactions (as en-
dorsed in the previous subsection). Also, and perhaps more importantly,
a certain amount of local or national pride penalises teams which simply
consist of the best foreign players or have too much turnover. If a team’s
income were derived only from winning games, these last two considerations
would be less important, so one can see how the ticket sales and sponsorship
business model creates a certain amount of diversity by compelling teams
to adopt a unique character.

Now imagine viewing teams as agents in an evolutionary simulation,
whose genes consist of players. The goal of such a simulation would be to
produce an optimal team by exchanging (or copying) players and modify-
ing them in different ways, occasionally playing them against each other
to estimate progress or create rankings. One can see immediately that the
standard crossover and mutation operations employed by GAs would be
terribly inefficient in this task. Random mutation is just as likely to pro-
duce an improvement as a regression, and random crossover is just as likely
to copy a bad gene as a good one. If there were only a few variables to
explore, these techniques might be suitably efficient, but with each player

42We are referring to the sport that Americans call “soccer”, although the difference is
not important in what follows.
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being described by (let’s say) hundreds of variables, and with eleven play-
ers per team, it is no longer feasible to use random walks to explore the
space of configurations. The “schema theorem”43 suggests that if there is
a low-dimensional subspace which parametrises consistently better teams,
then GA-style evolution will eventually converge to this subspace; but it is
unclear how it could do so faster than methods such as Powell’s method (a
gradient-less version of nonlinear conjugate gradient) which require many
fitness evaluations per dimension, thus demanding thousands of games to
take a single “step” towards this manifold. Hundreds of such steps might be
required for useful progress, so that hundreds of thousands of games would
be needed to create a good team.

Yet in the “real world” it is clearly possible to produce good players
and teams using a much smaller number of games. It is instructive to think
about how such selection might be performed. First of all, players are able
to learn and improve their performance not only by trying out random new
techniques but also by watching and emulating each other. Such changes can
even be implemented and evaluated over the course of a game. Secondly,
coaches can watch players and measure their performance, and use these
observations in deciding when to acquire a new player, perhaps from a lower-
division team, or when to let go of an existing one. To some extent such
evaluation depends on a coach’s ability to simulate a game in his head,
which could be inefficient to model, but there are also simple metrics such
as number of goals scored which can serve as a rule of thumb. More careful
evaluation might follow the ball over the course of a game - at the moment
when one player acquires the ball, what is our estimate of the value of the
position of the players; and when he passes the ball or loses it, is the new
position stronger or weaker? A better player will tend to improve his team’s
position by a larger step between the times that he gains and relinquishes
control of the ball. Similar reasoning is used to estimate the value of an
action in reinforcement learning using dynamic programming. In addition
to carrying out such evaluations, one would also want to account for those
occasions when a player never touches the ball, but still performs a useful
purpose by covering an opposing player or otherwise preventing him from
acquiring it. On the other hand, those players who neither touch the ball
nor prevent others from touching it can be safely appraised useless. Thus,
one can reliably calculate the value of a team’s players by observing where
the ball goes and imagining where it could go. Valuing players by mentally
simulating a whole game with and without each player is not necessary (note

43Holland, “Adaptation in natural and artificial systems”, op. cit.
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this would have similar time complexity to the traditional GA approach of
trying out random teams with different combinations of players). We will
return to various aspects of this analogy after making some observations
about biological evolution.

6.6.2.2 Biological Rerevisionism

The role of crossover and mutation in GAs is based on a view of genetics and
natural selection called Modern Evolutionary Synthesis or Neo-Darwinism,
which is associated with Charles Darwin (1809-1882) and Gregor Mendel
(1822-1884). According to this view, genes are inherited at random from
one or the other parent, and undergo random mutations from one genera-
tion to the next; natural selection then filters the best individuals out of the
resulting chaos. All of the pain and pleasure that an organism experiences
during his lifetime, and all of the physical and mental adaptation that he
undergoes, or the diseases that he becomes immune to - these experiences
and adaptations only contribute to the survival of the individual organism
and are not transmitted to his offspring (at least not at the genetic level).
The counterpart to this view, which hypothesises the heritability of some
such adaptations, is referred to as the Inheritance of Acquired Character-
istics (IAC). IAC is most commonly associated with an early proponent of
the principle, Charles Darwin’s lesser-known predecessor, the French natu-
ralist Jean Baptiste Lamarck (1744-1829). For this reason, IAC is popularly
known as Lamarckism or Neo-Lamarckism, although we prefer the broader
term IAC since Lamarck espoused other theories as well.

Few people have heard of Lamarck, and fewer still are aware of the fact
that Darwin himself was also a proponent of IAC.44 Darwin first proposed
the following mechanism, which he called Pangenesis, in his “The variation
of animals and plants under domestication”: Cells in the body (which is
to say, somatic cells) are continually dividing and being killed (by diseases
or toxins, the immune system, physical trauma, etc.). Thus, as their genes
experience random mutations, they undergo a process of selection - now
referred to as somatic selection. Cells with more useful genomes will tend to
survive in greater numbers. Darwin suggested that somatic cells may send
out “gemmules” which travel to the gonads and integrate successful new
genes into the germline, each cell having an equal “vote” in the constitution
of the resulting genome. In this way, beneficial mutations which occur in
somatic cells could be passed along to offspring. Such a process would

44C. Darwin. The variation of animals and plants under domestication. Murray, 1868;
C. Darwin. The Descent of Man, and Selection in Relation to Sex. Murray, 1871.
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greatly improve the speed at which genes could evolve: for humans, instead
of genes being limited to a populations of billions of individuals producing
a new generation every 20 years, they could now undergo selection in a
population of 100 trillion cells with new generations occurring for some cells
on a daily or weekly basis. Furthermore, there is no reason to consider the
mechanism biologically implausible. That evolution would clearly show a
strong preference to organisms in which such a mechanism existed argues
powerfully in its favour.

Since the 1970s, molecular biologists have been aware of a candidate
mechanism for Pangenesis-like functionality, in the form of retroviruses,
which have the ability to integrate a genetic payload into a host cell’s
genome.

Retroviruses were first observed in rare transmissible cancers, starting
with the Rous sarcoma virus;45 but the realisation that viral nucleotide se-
quences were found in the DNA of all uninfected chicken cells,46 that the
viruses had a tendency to move active genes between cells, and other evi-
dence led to a proposal by Howard Temin - called “the protovirus hypoth-
esis” - that these disease-causing viruses had originated in genes related
to normal cellular processes, such as the formation of antibodies.47 The
pathogenic effects of RSV were later found to derive from its genetic pay-
load - a mutant version of a gene regulating cell growth - implying that the
sarcoma gave rise to the virus, rather than vice-versa.48 In his book “Somatic
selection and adaptive evolution” (1981), Edward J. Steele, the most promi-
nent of the modern proponents of IAC, elaborated the protovirus hypothesis
and connected it to IAC and Lamarck.49 He explains that an endogenous
(i.e. originating internally to the organism) retrovirus (ERV) would be able
to move between cells copies of those genes which are being expressed (and
therefore undergoing transcription into mRNA) by capturing their mRNA
in the viral envelope; the majority of genes, being unexpressed, would be ig-
nored. Through this process, helpful mutations from diversely located areas

45P. Rous. “A sarcoma of the fowl transmissible by an agent separable from the tumor
cells”. In: The journal of experimental medicine 13.4 (1911), p. 397.

46J. Tooze. The molecular biology of tumour viruses. Cold Spring Harbor Laboratory,
1973.

47H.M. Temin. “Malignant transformation of cells by viruses.” In: Perspectives in biology
and medicine 14.1 (1970), p. 11.

48H.M. Temin. The DNA provirus hypothesis. Nobel lecture. 1975; E.J. Steele. Somatic
selection and adaptive evolution: on the inheritance of acquired characters. University of
Chicago Press, 1981.

49Steele, Somatic selection and adaptive evolution: on the inheritance of acquired char-
acters, op. cit.
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of the genome, each improving the function of a particular type of somatic
cell, could be incorporated together into a recipient germline cell’s genome
for transmission to offspring. Steele also proposes that gene exchange be-
tween pairs of somatic cells should occur using the same mechanism, and he
hypothesises organ-specific retroviruses to control such exchange.50 In other
research, Steele shows that an enzyme utilised in DNA repair, called DNA
polymerase eta, makes use of reverse transcription.51 This suggests that
imported retroviral genetic payloads could be incorporated specially by so-
matic cells under stress into their flagging genomes, providing a mechanism
whereby cells performing unsatisfactorily could emulate their neighbours.

With the advent of the Human Genome Project,52 we now know that 8%
of the genome codes for ERVs.53 ERVs are expressed most abundantly in
the epididymis54 and are also operative in the placenta,55 suggesting a role
in reproduction, and blocking their action makes pregnancy impossible.56

Sperm possess a mechanism allowing reverse-transcription of foreign RNA
into heritable DNA sequences existing outside of chromosomes.57 Thus, a
fully functional mechanism for IAC is to be found in humans and in other
animals (and perhaps even in plants as well), which is actually very similar
to the pangenesis mechanism proposed by Darwin in 1868, with retroviruses
taking the place of “gemmules”.

There is, in addition, considerable evidence that IAC actually takes

50Ibid.
51E.J. Steele. “DNA polymerase-eta as a reverse transcriptase: implications for mech-

anisms of hypermutation in innate anti-retroviral defences and antibody SHM systems.”
In: DNA repair 3.7 (2004), p. 687.

52F.S. Collins et al. “New goals for the US human genome project: 1998-2003”. In:
Science 282.5389 (1998), p. 682.

53R. Belshaw et al. “Long-term reinfection of the human genome by endogenous retro-
viruses”. In: Proceedings of the National Academy of Sciences of the United States of
America 101.14 (2004), p. 4894.

54A.A. Kiessling, R. Crowell, and C. Fox. “Epididymis is a principal site of retrovirus
expression in the mouse”. In: Proceedings of the National Academy of Sciences of the
United States of America 86.13 (1989), p. 5109; R. Crowell and A. Kiessling. “Endogenous
retrovirus expression in testis and epididymis”. In: Biochemical Society Transactions 35
(2007), pp. 629–633.

55S. Mi et al. “Syncytin is a captive retroviral envelope protein involved in human
placental morphogenesis”. In: Nature 403.6771 (2000), pp. 785–789.

56K.A. Dunlap et al. “Endogenous retroviruses regulate periimplantation placental
growth and differentiation”. In: Proceedings of the National Academy of Sciences 103.39
(2006), p. 14390.

57C. Pittoggi et al. “Generation of biologically active retro-genes upon interaction of
mouse spermatozoa with exogenous DNA”. In: Molecular reproduction and development
73.10 (2006), pp. 1239–1246.
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place in a variety of organisms. Darwin himself58 documented a variety
of anecdotes suggesting the possibility of IAC in both animals and humans.
Decades of experiments performed by Paul Kammerer (1880-1926) uncov-
ered a number of instances where by simulating environmental changes he
could directly induce the acquisition of new traits in animals such as sala-
manders, olms, newts, toads, and sea squirts; Kammerer was then able to
demonstrate the heritability of such adaptations59. Soviet geneticist Trofim
Lysenko found that winter wheat varieties could be made to grow in spring,
by cold-treating their seeds in a process called “vernalisation”; he also found
that these changes were heritable.60 Some learned behaviours are thought
to be heritable as well, as was asserted by Pavlov.61 William McDougall
conducted experiments with rats at Harvard between 1927 and 1933, which
demonstrated improvements over 34 generations in learning rate for a maze
task, despite the fact that he used only the worst-performing individuals
for breeding (to give a negative selection bias).62 McDougall’s results were
replicated63 successfully64 by Wilfred Agar at the University of Melbourne.65

58Darwin, The variation of animals and plants under domestication, op. cit.
59For example, Kammerer was able to coerce ovoviviparous fire salamanders to become

viviparous, and viviparous alpine salamanders to become ovoviviparous. He found these
changes to be heritable. Kammerer’s life and scientific accomplishments were memori-
alised in the Soviet film Salamandra (1928). (A. Koestler. The case of the midwife toad.
Hutchinson (London), 1971)

60R. Amasino. “Vernalization, competence, and the epigenetic memory of winter”. In:
The Plant Cell Online 16.10 (2004), p. 2553.

61Koestler, The case of the midwife toad, op. cit.
62W McDougall. “An experiment for the testing of the hypothesis of Lamarck”. In: Brit.

J. Psychol. 17 (1927), pp. 267–304.
63WE Agar et al. “Fourth (final) report on a test of McDougall’s Lamarckian experiment

on the training of rats”. In: Journal of Experimental Biology 31 (1954), pp. 307–321.
64Agar, despite using a lower shock voltage than McDougall for training, found a sta-

tistically significant improvement in his trained colony. See table 4 in Agar 1954. A t-test
comparing 1 to the ratio of percent membership in the first performance class for training
versus control gives a p-value of 0.955, for membership in performance class 10 (reversing
the comparison) the p-value is 0.917. Including only generations 25-50, where training can
be expected to have had a greater effect, gives p-values of 0.913 and 0.999, respectively.
There are 13 data points in total.

65It is difficult to imagine a biological mechanism which could be responsible for the
heritability of learned behaviours. We note, however, that the immune system is estimated
to generate about 10 billion antibodies (L.J. Fanning, A.M. Connor, and G.E. Wu. “Devel-
opment of the immunoglobulin repertoire”. In: Clinical immunology and immunopathology
79.1 (1996), pp. 1–14), which cross-react in a regulatory network (N.K. Jerne. “Towards
a network theory of the immune system.” In: Annales d’immunologie. Vol. 125. 1-2. 1974,
p. 373) whose complexity could come close to that of the nervous system (with 100 billion
neurons); because the primary structure of antibodies is heritable, a correspondence be-
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Steele’s IAC research gives special attention to the immune system, since
the highest rates of natural somatic evolution among the various cells in the
body are found in lymphocytes. This evolution of lymphocytes underlies the
process by which the immune system learns to recognise antigens - called
“somatic hypermutation” (SHM). In SHM, lymphocytes divide, survive or
perish, and undergo mutations in their antibody-encoding genes. SHM plays
an indispensable role in the mechanism by which an animal recovers from
an infection, for example.

A number of experiments have shown that acquired changes to the im-
mune system are heritable. We outline a few of the major results. Through
a series of experiments in rabbits, Guyer and Smith66 showed that acquired
autoimmune diseases could be inherited. In experiments where a (male or
female) rabbit or rat is inoculated with a particular antigen prior to mating,
the offspring are (upon inoculation with the same antigen) found to have
antibodies with idiotype67 expression levels that show characteristics of ma-
ternal68 and paternal69 influence. Some take this to suggest that the somatic
genes which give antibodies their specificity - called v-genes, since they code
for antibody “variable regions” - are directly heritable. One promising mech-
anism for v-gene heritability would involve transferring such genes into the
germline from circulating lymphocytes using retroviruses. In fact, a well-
studied retrovirus which is found in lymphocytes has most of its genetic
variability concentrated in its envelope proteins, in five regions totalling
about 117 amino acids, while the length of an antibody heavy chain v-gene
is about 110 amino acids long, a near match.70 One might imagine that this
particular retrovirus could be related to some immune-specific ERV respon-

tween the nervous system and the immune system could explain the heritability of learned
behaviours.

66MF Guyer and EA Smith. “Studies on cytolysins. I. Some prenatal effects of lens
antibodies”. In: Journal of Experimental Zoology 26.1 (1918), pp. 65–82; MF Guyer and
EA Smith. “Studies on cytolysins. II. Transmission of induced eye-defects”. In: Journal of
Experimental Zoology 31.2 (1920), pp. 171–223.

67The idiotype of an antibody refers to those aspects of its shape not related to antigenic
specificity.

68M. Wikler et al. “Immunoregulatory role of maternal idiotypes. Ontogeny of immune
networks.” In: The Journal of experimental medicine 152.4 (1980), p. 1024; J.C. Olson
and G.A. Leslie. “Inheritance patterns of idiotype expression: maternal-fetal immune reg-
ulatory networks”. In: Immunogenetics 13.1 (1981), pp. 39–56.

69C.A. Cooper-Willis et al. “Influence of paternal immunity on idiotype expression in
offspring”. In: Immunogenetics 21.1 (1985), pp. 1–10.

70S. Modrow et al. “Computer-assisted analysis of envelope protein sequences of seven
human immunodeficiency virus isolates: prediction of antigenic epitopes in conserved and
variable regions.” In: Journal of Virology 61.2 (1987), p. 570.
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sible for the transfer of antibody genes between pairs of lymphocytes and
between lymphocytes and germline cells71. We also remark that the transfer
of blood between a post-inoculation rabbit and a naive one causes the recip-
ient to produce antibodies with the same idiotypic markers as the donor.72

Recent research by Steele exhaustively analyses asymmetries in DNA nu-
cleotide mutation probabilities, reconstructed from published antibody gene
sequences, to argue that certain kinds of mutation must be occurring in an
RNA intermediary - implying a (presumably retroviral) reverse transcrip-
tion step in which antibody genes are shared between lymphocytes.73 Even
without such a detailed analysis of cellular mechanisms, there are a num-
ber of basic characteristics of v-genes which are difficult to explain using a
Neo-Darwinian model of mutation: for instance, the presence of many ho-
mologous copies of a v-gene in the same genome, and the concentration of
variability into three distinct subregions.74

6.6.2.3 Simulated evolution

We have brought together a number of biological facts in this section because
they are not elsewhere described well enough for our purposes. Mainstream
biology gives an alternative interpretation to the evidence we have presented,
but at the same time it is clear that there is no reason to avoid trying to
implement the same mechanisms in simulation which we could plausibly

71The presence of antibodies to HIV is also associated with antibodies to ERVs (K.E.
Garrison et al. “T cell responses to human endogenous retroviruses in HIV-1 infection”.
In: PLoS Pathog 3.11 (2007), e165).

72G. Urbain-Vansanten et al. “Synthesis of antibodies and immunoglobulins bearing
recipient allotypic markers and donor idiotypic specificities in irradiated rabbits grafted
with allogeneic cells from hyperimmune donors.” In: Annales d’immunologie. Vol. 130. 3.
1979, p. 397; J. Urbain et al. “Sharing of idiotypic specificities between different antibody
populations from an individual rabbit”. In: European Journal of Immunology 5.8 (1975),
pp. 570–575.

73E.J. Steele and J.W. Pollard. “Hypothesis: Somatic hypermutation by gene conversion
via the error prone DNA→RNA→DNA information loop”. In: Molecular Immunology 24.6
(1987), pp. 667 –673; Robert V. Blanden et al. “The signature of somatic hypermutation
appears to be written into the germline IgV segment repertoire”. In: Immunological Re-
views 162.1 (1998), pp. 117–132; E.J. Steele et al. “Computational analyses show A-to-G
mutations correlate with nascent mRNA hairpins at somatic hypermutation hotspots”. In:
DNA repair 5.11 (2006), pp. 1346–1363; E.J. Steele. “Mechanism of somatic hypermuta-
tion: critical analysis of strand biased mutation signatures at A: T and G: C base pairs”.
In: Molecular immunology 46.3 (2009), pp. 305–320.

74T.T. Wu and E.A. Kabat. “An analysis of the sequences of the variable regions of
Bence Jones proteins and myeloma light chains and their implications for antibody com-
plementarity”. In: The Journal of Experimental Medicine 132.2 (1970), p. 211.

154



Chapter 6. Evolutionary experiments 6.6. DISCUSSION AND FUTURE WORK

hypothesise in nature. In fact, computer scientists are not restricted to
making analogies to nature, and some methods in the field of GAs are based
on a supposedly “Lamarckian” view of evolution while at the same time
denying or ignoring the relevance of IAC to biology.75

In our own evolutionary simulations, we included a selection strategy
that we called “directed crossover” (this term has a different meaning in
GAs), which was intended to capture some small fraction of the abilities of
IAC. In our version, each variable could be compared to a cell, and the set
of GBP regions to genes in the genome. Within a winner of the CG, the
“success” of a cell was measured by how greatly the conditioned marginals
of the corresponding model variable differed from those of the losing oppo-
nent. The crossover operation then involved copying random “genes” (GBP
regions) from successful cells (variables) which were “active” in those cells
(i.e., the GBP regions contained the corresponding variables) from the win-
ner to the loser.

The performance of our directed crossover was not distinguished from
the other methods; it was slightly less efficient overall, but not enough so
as to discourage us from pursuing the ideas of IAC in a more refined form.
Indeed, the implementation we chose was simplistic enough that even had it
performed much worse, this would not have deterred us from recommending
a more sophisticated implementation of the ideas of IAC. We regret that we
must leave such an implementation to future work.

Although our own version of IAC left much to be desired, at the same
time it is not easy to be enthusiastic about the methods which have been
proposed in the GA literature. The “Lamarckian” methods of Ross, Whitley,
and other authors generally function by directing the simulation to evaluate
a sequence of specific mutations, somewhat like coordinate ascent, in a local
search after each reproduction, and select the best individual from among
the results of each one.76 In other words, a new individual is required in
order to evaluate each proposed change. Due to their time complexity,
from a biological standpoint these methods are closer in spirit to cloning of
individuals than to somatic selection of cells. We suggest that one should
try to bring IAC to the field of GAs by first devoting some attention to

75D. Whitley, V. Gordon, and K. Mathias. “Lamarckian evolution, the Baldwin effect
and function optimization”. In: Parallel Problem Solving Nature from PPSN III (1994),
pp. 5–15; B.J. Ross. “A Lamarckian Evolution Strategy for Genetic Algorithms”. In:
(1999).

76Whitley, Gordon, and Mathias, “Lamarckian evolution, the Baldwin effect and func-
tion optimization”, op. cit.; Ross, “A Lamarckian Evolution Strategy for Genetic Algo-
rithms”, op. cit.
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the more plausible and parsimonious IAC mechanisms which have been put
forward by professional biologists, such as Darwin and Steele.

The same criticisms that we have levelled against the “Lamarckism” of
GAs also hold for many implementations of the closely related “Baldwin
effect”. In the Baldwin effect, local search is used to optimise each new
individual, but the results are not incorporated back into the genome.77

Whitley found that the Baldwin effect can sometimes outperform “Lamar-
ckian” methods (Lamarckian in the GA sense).78 The poor time complexity
of both methods, requiring a number of fitness evaluations proportional to
the size of the genome, may be slightly remedied by more intelligent “local
search” methods which could for example identify good search directions by
efficiently computing a gradient rather than performing coordinate ascent.
Yet even then, the GAs version of Lamarckism (and the related Baldwin
effect) fall short of the power of the Pangenesis/retroviral mechanism pro-
posed by Darwin and Steele, in which a type of cell that makes heavy use of
a specialised gene can evaluate and then broadcast helpful mutations spe-
cific to that gene throughout the body. To highlight the contrast between
the plausible capabilities of IAC and the impoverished mechanisms of exist-
ing GA research, we outline some ideas about how an optimisation method
using IAC-based natural selection could be constructed. To this end we now
return to the football analogy with which we opened this section.

We hope that it is apparent at this point that many of the behaviours
we identified in the process of training and assembling a good football team,
which may have seemed complex and beyond the capacity of simple bio-
logical mechanisms to implement, actually have straightforward biological
analogies: when a football player emulates the behaviour of a better player,
we can compare this to a cell under stress incorporating retroviruses from
successful, reproducing cells, and updating its genome to emulate theirs.
When one team acquires a good player from another team, we can for ex-
ample imagine an embryo inheriting a successful combination of the genes of
its parents, which have been evaluated and aggregated into a pair of germline
cells through the Pangenesis/retroviral mechanism.

There is one part of the football analogy whose biological counterpart
we have not yet discussed, and which stands out as still lacking an obvious
mechanism. This is the process by which it is possible to evaluate a player by
watching as the ball passes in and out of his possession. The observation that

77G.E. Hinton and S.J. Nowlan. “How learning can guide evolution”. In: Complex sys-
tems 1.1 (1987), pp. 495–502.

78Whitley, Gordon, and Mathias, “Lamarckian evolution, the Baldwin effect and func-
tion optimization”, op. cit.
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one might evaluate the potential or strength of an arrangement of players
and ball on the field (which could be quantified as the probability of scoring
the next goal, for example) at the instant of time when the ball comes into
the control of a given player, and again when it leaves his control, and then
credit him with the difference, is similar in spirit to an idea proposed by
Eric Baum in “Toward a model of intelligence as an economy of agents”.79

In that paper, Baum considers solving a reinforcement learning problem
using a population of agents. At each step, agents bid for control of the
system, and the winning agent gets to choose the next action which the
system takes. He then receives any reward from the environment, plus the
amount of the next agent’s bid to receive control of the system. Thus,
money is conserved within the system, and tends to accumulate with those
players who are skillful in taking actions that result in rewards or which
leave the system in a more highly-esteemed state than it was found. This
accumulation of money is then used to guide a kind of evolution among
players.

In both Baum’s proposal and our football analogy, there is a system
which traces out a one-dimensional sequence over time - consisting of ac-
tions in one, and possession of the ball in the other; and an objective for
this system - to get rewards, or to score goals. By attributing responsibil-
ity for the system at any given time to one of a collection of cooperating
agents or players, one can define a conserved quantity representing progress
towards this goal which is then distributed between these agents and used
to apportion credit between them for the system’s overall performance. The
sequential, one-dimensional nature of such a credit-assignment framework
seems to be the key idea. We are not sure to what this notion might cor-
respond in biology, but note that a familiar conserved quantity is energy,
and that if the energy from food or the air were somehow to flow through
the body in one-dimensional paths, then the manner in which cells are able
to use this energy could serve as a guideline for determining their fitness
and deciding how much they should be allowed to reproduce. Such a pro-
cess is not to our knowledge proposed by Darwin or Steele, but neither do
their theories explain very well how fitness is determined for the purpose
of somatic selection, for example how tumours and other malignancies are
avoided.

The sequential control pattern outlined above can easily be pictured
within the conditional game as well. In this case, control over the system

79E.B. Baum. “Toward a model of intelligence as an economy of agents”. In: Machine
Learning 35.2 (1999), pp. 155–185.
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would represent the ability to clamp a given variable to a given value, and
the final objective would be the game’s value. If one is to use the more so-
phisticated and powerful framework of adaptive evolution in trying to evolve
a population of players who can play the conditional game, an important
problem would be to understand how to partition credit for a player’s perfor-
mance among his “genes”. It may be well to keep in mind Baum’s economy
of agents model, and the above discussion, in trying to address this problem.

The essential difference between our evolutionary ideas and those of the
traditional GA framework, is that in our framework, as in the Pangene-
sis/retroviral model of IAC, evolution happens simultaneously on multiple
levels of an overlapping hierarchy (“overlapping” in the sense that the struc-
ture is more like a DAG than a tree). In retroviral IAC, most of the natural
selection which takes place does so at the level of cells, which are allowed
to replicate in proportion to their service to the organism, and which com-
municate their improvements among each other and to the germline cells.
The next higher level of natural selection is that of organisms, and some-
times philosophers and social scientists talk about evolution on higher levels
such as societies as well. A solution to the problem of appropriately pro-
moting the survival of cells that are useful to the whole organism, which
is a kind of credit assignment problem, is presupposed by IAC. It may in
turn be helpful to frame this problem in terms of reinforcement learning (or
sequential decision theory) as proposed above. The full credit assignment
problem, requiring an exact computation of the fitness of the optimal organ-
ism, would be intractable, and casting credit assignment in the sequential
control framework with some approximate notion of reward would only fa-
cilitate an approximate solution. Evolution on higher levels such as that
of organisms could then be seen as a necessary consequence of the imper-
fect and approximate nature of the values assigned by such a framework to
cells and genes (consider the problem of cancer, for example). Thus, the
mortality of organisms is related to communication between their cells. We
note that just as cells can exchange retroviruses, organisms can also ex-
change information as well. This information can be communicated either
by observation of another’s behaviour, or through language, or yet again in
the form of retroviruses (which can be transferred as a corollary of sexual
reproduction).

The overlapping hierarchy of communication between organisms and
cells in IAC can be seen as analogous to the interwoven structure of in-
teractions in an evolutionary simulation, where we saw that the (cycle-free)
tree-structured SET was sub-optimal, as well as the fact that diseases ex-
ist in a (presumably overlapping) hierarchy of successively more localised
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species (mentioned on page 145 in section 6.6.1.2). We imagine that part
of designing a successful optimisation framework based on IAC would be
gaining a better understanding of how these various hierarchies fit together
in a natural and seamless manner, and to what extent the levels of such
hierarchies can be fluid or emergent versus granular or primary.

6.6.2.4 Contemporary wisdom

We have permitted ourselves to engage in some healthy speculation about
the biological mechanisms which might underlie a type of evolution which is
more efficient and powerful than the one espoused by most biologists. Were
the IAC concept and the Pangenesis/retroviral mechanism to win general
support among evolutionary biologists, those who study GAs would certainly
suffer some embarrassment on account of having neglected to consider one
of the most basic processes driving adaptation. We can also surmise that
these theories, implying the possibility of horizontal transmission of genetic
and immunological information, could be attended by certain political dif-
ficulties. Thus it is with a sigh of relief that we inform the reader of the
numerous reasons which can be given for disregarding the evidence we have
presented in favour of IAC.

Biologists universally reject the possibility of the inheritance of acquired
characteristics. The scientific consensus among biologists is that all viral
fragments present in the human genome are biologically inactive, mere fossil
remnants from infections which occurred millions of years ago. A few of
these infections may have been able to serve a useful purpose - for instance,
placental cells are held together by retroviral envelope proteins, and this
helps them create an impermeable barrier between the blood of the mother
and that of the foetus.80 This is why retroviruses are expressed on the pla-
centa. Transmission of immunity to offspring is made possible by the sharing
of antibodies, which are able to move across the placenta; heredity of idio-
typic markers is found to occur because of the immunological network, which
guides the recipient immune system in evolving antibodies with the same
idiotypes as the donor.81 Horizontal transmission uses the same mechanism,
although paternal heredity of immunity is discredited by most immunol-
ogists.82 As for the possibility of IAC in other organs, Richard Dawkins
(1941-) points out that the genome is complex and more like a recipe than

80Mi et al., “Syncytin is a captive retroviral envelope protein involved in human placental
morphogenesis”, op. cit.

81J. Flegr. Evolutionary biology, 2nd edition. Academia Prague, 2009.
82Ibid.
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a set of attributes. Expecting it to be able to capture the changes occurring
through use and disuse of an organ is like expecting to be able to modify
a cake recipe so that the cake comes out of the oven with one slice miss-
ing.83 Many animal experiments have confirmed the impossibility of IAC.
For instance, Francis Galton (1822-1911), cousin of Darwin, performed ex-
periments in which blood from one variety of rabbit was transfused into
another; the offspring of the recipient failed to show any of the donor’s
traits.84 August Weismann (1834-1914) performed experiments in which he
cut off the tails of rats, but their offspring still had tails even after many
generations of such modification, thus proving the existence of what became
known as the “Weismann barrier”, a tissue barrier which prevents genetic
information from somatic cells from passing into the germline.85 As for the
experiments of McDougall, we should note that Agar’s 20-year reproduction
of McDougall’s experiment, in which he used proper controls, found that
trainability of the trained and control colony both fluctuated up and down
together, and showed clear seasonal variations as well. This suggests that
the improvements observed by McDougall were due to a general improve-
ment in the health of his colony and not to IAC, a possibility which he
would have detected had he used controls.86 We also note that McDougall
was a proponent of eugenics and worked to establish parapsychology as a
respected scientific discipline.87 As for Paul Kammerer, he was exposed as
a fraud by Gladwyn Kingsley Noble, who discovered the black nuptial pads
on the feet of Kammerer’s midwife toad specimen to contain India ink -
Kammerer was so embarrassed that he committed suicide in the forest of
Schneeberg.88 Kammerer also believed in spontaneous generation.89 And
Lysenko stands accused of scientific fraud of an even more serious nature.
He obstructed Soviet genetics for decades with his Marxism-based dogmas
of IAC, he contributed to Soviet malnutrition with his opposition to hybrid
corn and support of failed agricultural policies costing over a billion rubles,

83R. Dawkins. The selfish gene. Paladin, London, 1976.
84M.G. Bulmer. Francis Galton: pioneer of heredity and biometry. Johns Hopkins Uni-

versity Press, 2003.
85Flegr, Evolutionary biology, 2nd edition, op. cit.
86Agar et al., “Fourth (final) report on a test of McDougall’s Lamarckian experiment

on the training of rats”, op. cit.
87E. Asprem. “A nice arrangement of heterodoxies: William Mcdougall and the profes-

sionalization of psychical research”. In: Journal of the History of the Behavioral Sciences
46.2 (2010), pp. 123–143.

88Koestler, The case of the midwife toad, op. cit., p. 13.
89W. Reich. “The discovery of the orgone. Vol. I. The function of the orgasm; sex-

economic problems of biological energy.” In: (1942), p. 26.
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and he even used the secret police to eliminate his scientific opponents.90

In spite of these misfortunes, we think that IAC is an important idea
whose implications might inspire some productive developments in the field
of GAs. Even if it is doomed to languish forever in margins of biology, its
concepts and mechanisms could still be used to improve the performance
of simulated evolution to the point of enjoying wide practical applicability.
We also raise the tentative suggestion that the GA field could consider other
analogies, such as the simple one we have sketched involving football, which
are less encumbered and easier to investigate than biological evolution.

6.6.3 Conclusion

In this section we have reviewed the lessons, successes, and shortcomings of
our attempt to harness the CG in evolutionary optimisation, and we have
discussed at some length our ideas about principles and techniques which
might play a role in more serious projects of the same nature. Most of
the ideas we discussed have not been explained elsewhere, which is why we
considered it necessary to set them down here. Perhaps a long “future work”
section is also appropriate to a chapter which presents such disappointing
results.

We hope that the foregoing material was stimulating. However, given
all of the issues we raised and the analogies we drew upon, there may be
some doubt in the mind of the reader as to whether it is possible - without
getting lost in an endless progression of increasingly complex concerns and
remedies - to define a flexible self-regulating evolutionary system which can
apply well to both small and large inference problems.

On the other hand, in the introduction (section 6.1) we argued that the
only way to create an accurate and autonomous approximate inference algo-
rithm is to incorporate notions of cooperation and competition, as we have
tried to do, to result in some kind of genetic algorithm-like system. There
seems to be no reason to avoid attempting to improve upon the naive, GA-
inspired framework we documented in the experiments of this chapter, until
we are able to obtain a useful approximate inference algorithm. A good
benchmark is the rate at which evolutionary simulations are able to improve
the error of an approximation; simply outperforming or even replicating the
1√
n

rate of sampling methods would be a worthy goal. Furthermore, even

though explaining the notions of this section required numerous analogies,
they are at their core rather simple, so that we might imagine that they

90B.M. Cohen. “The descent of Lysenko”. In: Journal of Heredity 56.5 (1965), p. 229;
B.M. Cohen. “The demise of Lysenko”. In: Journal of Heredity 68.1 (1977), p. 57.
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could be unified in a mathematically elegant manner. And perhaps the
problems of complexity should be smaller when applying evolution to dis-
crete approximate inference than to more general tasks involving language
or theorem-proving in a higher-order logic, where a system could conceiv-
ably have the power to exploit arbitrary symmetries in the input problems
or even to reason about its own behaviour. If we restrict our attention to
the more concrete discrete approximate inference framework, we think it
should be possible to identify a reasonable, circumscribed set of rules and
principles by which evolutionary optimisation could be conducted in a prac-
tical yet general manner. The limited framework would be a useful target
for research into evolutionary systems which, after having been validated in
the simpler setting of discrete approximate inference, could then be used as
a foundation for more ambitious projects.

6.7 Conclusion

This final chapter concludes our investigation into the subject of combining
approximate inference algorithms. We surveyed the results and insights of
previous chapters, and argued from first principles that the final outcome
of our approximate inference philosophy should be the construction of ap-
proximate inference algorithms based on a kind of artificial evolution. We
found that it was practicable to harness the conditional game of chapter
4 within a simple Genetic Algorithms framework in optimising the quality
of an approximation. Although we were not able to produce a good infer-
ence algorithm using this approach, we were not very surprised to discover
that our promising yet elusive objective did not yield to a simple applica-
tion of the traditional framework, and we drew valuable lessons from the
failed attempt. We regretted having to leave the rest of this task to future
researchers, but we could not resist elaborating our thoughts about some di-
rections in which one might try to look for a better solution. As is common
in the related field of Genetic Algorithms, we found ourselves obligated to
draw some comparisons to nature in order to explain and justify our philos-
ophy for tackling this complex subject. We considered the possibility that,
just as we must understand our own minds in order to understand artificial
intelligence, before we can really understand simulated evolution we must
try to understand biology. This outlook motivated us to delve into the in-
teraction between pathogenic microparasites and biodiversity in evolution,
and even to examine the relationship between the evolution of various mul-
ticellular organisms and the processes of somatic adaptation in individual
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organisms. We hope that it is possible to develop and refine these notions
in future work, and eventually to produce a practical inference algorithm
based on evolutionary principles.

6.8 Acknowledgements

The author would like to thank Victor Carlsen for explaining the ins and
outs of professional football.
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Chapter 7

Summary

In this thesis we have explored different ways of combining approximate in-
ference algorithms. In the introduction we defined approximate inference
and argued that because it is not always feasible to hand-craft an approxi-
mation method by validating it with data samples or by some other metric,
more attention should be paid to the setting where approximate inference
must be evaluated using internal, rather than external criteria - what we
called the “pure approximate inference” setting. We conjectured that new
advances in approximate inference will depend on new ways of combining
approximate inference algorithms with each other, and we suggested four
forms which such combination might take:

1. Subdividing an inference problem among multiple approximate algo-
rithms and combining the results. In chapter 3, we looked at perform-
ing inference by divide-and-conquer. The inference algorithm we used
was BP, but other message passing algorithms, such as GBP, could
be harnessed in the same way. By applying back-propagation to the
message updates we derived a simple heuristic for choosing the condi-
tion variable by which to partition a model. We found that the results
were competitive with the time and accuracy of existing algorithms.

2. Comparing the accuracy of two approximations. Chapter 4 proposed
a “conditional game” which can be used to compare the accuracy of
two approximations. We showed that this game can correctly dis-
tinguish between five standard inference algorithms by accuracy on
a standard example graph. We also used it to rank GBP approxi-
mations parametrised by different region configurations, via a single-
elimination tournament, and we saw that the conditional game out-
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performed another simple game, the code-length game. Applications
of the conditional game were further explored in the next two chapters.

3. Transferring information from one approximation to another. Chapter
5 looked at a protocol which we called “guided inference”, in which
one inference algorithm attempts to teach another by giving it a series
of example states at which to evaluate the model’s unnormalised joint
distribution. We implemented several methods of selecting these states
and found that the best performance was given by the method in which
the teacher selects states by playing the conditional game with the
student.

4. Optimising over the space of approximations. Chapter 6 explored the
use of the conditional game as a way of selecting mates in a sim-
ulated evolution experiment, similar to Genetic Algorithms. In our
experiment, the accuracy of members of the population progressed at
a rate of about 1/ 3

√
n. We found that evolution was eventually able

to outperform the (cooperation-less) single-elimination tournament at
producing good approximations.

The conditional game (the second of the projects listed above) solved
an important open problem concerning how we should evaluate the relative
performance of our inference algorithms on large graphs. All four projects
make valuable contributions to the study of approximate inference. We
hope that this research provides a structure upon which future research into
approximate inference could be built, and as a collection of new problems
and of directions which merit further investigation.
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Glossary

agreement rate The rate, according to a given error metric, at which the Condi-
tional Game correctly identifies the approximation with smallest error (our
terminology), 86

AI Artificial Intelligence, 1

anytime algorithm An algorithm which can return an approximate solution to
a problem even if it is stopped before it has found an exact solution., 108

applied approximate inference The application of approximate inference to
problems where a model is learned from data (our terminology), 10

BBP Back-belief-propagation, an application of reverse-mode automatic differen-
tiation (i.e. back-propagation) to the Belief Propagation messages and beliefs
(our terminology), 55

Bethe Free Energy A free energy function whose stable points are fixpoints of
Belief Propagation, 23

BP Belief Propagation, a simple approximate inference algorithm, which uses mes-
sage passing and is exact on trees, 19

CBP Conditioned Belief Propagation - the application of Belief Propagation to
a model which has been partitioned into smaller models through variable
conditioning (our terminology), 54

CCCP The Convex Concave Procedure, a convergent double-loop algorithm for
finding local minima of the Bethe Free Energy, which is derived by writing
the energy as a difference of two convex functions, 17

CG The Conditional Game, a two-player game for comparing approximations (our
terminology), 76

CP Conditional Player - in the CG, the player who conditions variables (our ter-
minology), 76

crossover An operator used in Genetic Algorithms which combines two parent
genotypes to produce an offspring genotype, 113

EP Expectation propagation, an approximate inference algorithm which is based
on a generalisation of “assumed-density filtering”, 17
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Glossary

factor A function which is used to define interactions between some subset of
variables in a factor graph, 15

factor graph A way of specifying a statistical model as a product of local functions
of the variables, or “factors”, 15

FBP Fractional Belief Propagation, an approximate inference algorithm which
generalises BP. It can be derived by introducing fractional over-counting
numbers into the Bethe Free Energy and minimising the resulting expres-
sion, 17

fitness function A way of measuring the fitness of individuals in an evolutionary
simulation based on Genetic Algorithms, 112

fitness proportional selection A selection strategy used in Genetic Algorithms
which chooses an individual with a probability proportional to his fitness,
113

GA Genetic Algorithms is a way of solving optimisation problems using evolution-
ary simulations which apply crossover and mutation operators to produce new
individuals, and use a problem-specific fitness function for selection, 111

GBP Generalised Belief Propagation, an algorithm which passes messages to find
local minima of the Kikuchi Free Energy, 19

Gibbs sampling The simplest MCMC method, 25

guided inference An protocol for sharing information between two approximate
inference algorithms (our terminology), 92

HAK Heskes-Albers-Kappen, a convergent double-loop algorithm for finding local
minima of the Bethe Free Energy, 84

IAC The inheritance of acquired characteristics, a kind of evolution in which so-
matic adaptations are heritable, 149

idiotype The idiotype of an antibody refers to those aspects of its shape not
related to antigenic specificity, 153

Kikuchi Free Energy A free energy function whose stable points are fixpoints of
Generalised Belief Propagation, 24

Lamarckism Another name for IAC, 149

lymphocyte A type of cell employed by the immune system, which involved in
producing antibodies and recognising antigens, 115

MCMC Markov Chain Monte Carlo, a class of approximate inference algorithms
which averages samples produced using a Markov Chain, 18

MF Mean field, an approximate inference algorithm which derives message updates
from the assumption that every variable in a model is independent, 17

microparasite A parasitic microorganism, 138
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Glossary

Modern Evolutionary Synthesis The dominant view of evolution, based on
natural selection and Mendelian inheritance, 149

MP Marginal Player - in the CG, the player who proposes marginals (our termi-
nology), 76

mutation An operator used in Genetic Algorithms which applies random muta-
tions to a genotype, 112

NP The class of decision problems which are polynomial-time soluble on an NTM,
44

NP-complete A problem is NP-complete if it is in NP and any other problem in
NP can be reduced to it in polynomial time, 44

NP-hard A problem is NP-hard if problems in NP are polynomial time reducible
to it, 45

NTM A TM which is allowed to make “non-deterministic” choices - the input is
accepted if some unspecified set of choices leads to an “accept state”, 44

P The class of decision problems which are soluble on a TM in time bounded by
a polynomial function of the input length, 44

PA partial assignment: an assignment of values to a subset of a model’s variables
(our terminology), 30

Pangenesis A mechanism of adaptation proposed by Darwin to explain the in-
heritance of acquired characteristics, 149

phenotype The external characteristics of an organism, a consequence of its geno-
type and the environment, 112

pure approximate inference The application of approximate inference to prob-
lems where a model is fully specified without using data, for instance from
rules or axioms (our terminology), 10

relative fitness A fitness function which provides a relative comparison of two
individuals, 114

retrovirus A kind of virus which has the ability to integrate a genetic payload
into a host cell’s genome, 150

reverse-mode automatic differentiation A method for computing the gradi-
ent of a function in time proportional to evaluating it (also known as back-
propagation), 56

SET Single-elimination tournament, a protocol for choosing a winner from a set
of contestants by arranging competitions between pairs of them, in which
contestants are retired as soon as they lose a game, 87

SHM Somatic Hypermutation - a mechanism by which the immune system learns
to recognise antigens, in which lymphocytes divide, survive or perish, and
undergo mutations in their antibody-encoding genes, 152
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Glossary

simulated evolution The use of algorithms for solving difficult yet parallelisable
optimisation problems using cooperation and competition, perhaps based
on analogies to the principles of biological evolution, natural selection, and
adaptation (our terminology), 111

TM Turing Machine: an idealised computer, 44

tournament selection A selection strategy used in Genetic Algorithms which
compares individuals chosen at random from the population, 113

TRW-BP Tree Reweighted Belief Propagation, 17

UAI Uncertainty in Artificial Intelligence, a machine learning conference which
holds an approximate inference competition, 76

XOR Exclusive or, a function of some number of bits which outputs whether an
even number of its arguments are set, 35
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