
Choosing a Variable to Clamp:
Approximate Inference Using Conditioned Belief Propagation

Frederik Eaton and Zoubin Ghahramani
Department of Engineering

University of Cambridge, UK

Abstract

In this paper we propose an algorithm for
approximate inference on graphical models
based on belief propagation (BP). Our al-
gorithm is an approximate version of Cutset
Conditioning, in which a subset of variables
is instantiated to make the rest of the graph
singly connected. We relax the constraint
of single-connectedness, and select variables
one at a time for conditioning, running belief
propagation after each selection. We consider
the problem of determining the best vari-
able to clamp at each level of recursion, and
propose a fast heuristic which applies back-
propagation to the BP updates. We demon-
strate that the heuristic performs better than
selecting variables at random, and give exper-
imental results which show that it performs
competitively with existing approximate in-
ference algorithms.

1 INTRODUCTION

Belief propagation, also known as the sum-product al-
gorithm, is an algorithm for approximate inference in
graphical models. It is related to the Bethe approxi-
mation (Bethe, 1935; Yedidia et al., 2000) which was
developed in statistical physics. BP was first used as
an inference algorithm by Gallager in an application
to error correcting codes (Gallager, 1963).

BP is the basis for a number of other algorithms, both
exact and approximate. Approximate extensions of
BP include Generalized Belief Propagation (Yedidia

Appearing in Proceedings of the 12th International Confe-
rence on Artificial Intelligence and Statistics (AISTATS)
2009, Clearwater Beach, Florida, USA. Volume 5 of JMLR:
W&CP 5. Copyright 2009 by the authors.

et al., 2001) (which can be used for the Cluster Vari-
ation Method (Kikuchi, 1951; Pelizzola, 2005)), Ex-
pectation Propagation (Minka, 2001), and Loop Cor-
rected Belief Propagation (Mooij et al., 2007).

A popular exact extension of BP is called Cutset Con-
ditioning (Pearl, 1988), which is based on the idea of
turning a complex graphical model into a simpler one
by conditioning on a set of variables. Other exact ex-
tensions of the conditioning idea have been developed
(Darwiche, 2001).

Even sophisticated exact inference algorithms are only
tractable on reasonably small graphs, and in this ar-
ticle we are interested in approximate inference algo-
rithms based on the conditioning idea.

The organization of this article is as follows. First
we give a theoretical background for our algorithm,
with brief descriptions of BP, conditioning, and back-
propagation, and then a description of the algorithm
itself. Then we present the results of numerical ex-
periments which compare the performance of our al-
gorithm with other popular algorithms.

2 THEORY

2.1 GRAPHICAL MODELS

Given N random variables x = {xi}i∈V , where xi ∈
Xi. For α ⊆ V where α = {i1, . . . , im}, write xα =
(xi1 , . . . , xim). We define a distribution over x using
a set of functions ψα : Xα → R+ for each α ∈ F for
some F ⊆ 2V :

P (x1, . . . , xN) =
1

ZP

∏

i∈V

ψi(xi)
∏

α∈F

ψα(xα) (1)

where

ZP =
∑

x

∏

i∈V

ψi(xi)
∏

α∈F

ψα(xα) (2)

We write α \ i for α \ {i}. Dually, we can consider
each variable as the set of factors containing it, so

Choosing a Variable to Clamp

we will write i \ α for {β ∈ F | i ∈ β, β 6= α}, and
|i| = |{α ∈ F | i ∈ α}|. Membership i ∈ α will also be
written i ∼ α or α ∼ i. Where there is no danger
of confusion, we will drop the index set and write e.g.
∏

α for
∏

α∈F or
∏

i for
∏

i∈V .

Associated with F and V is a bipartite graph G with
vertex set V ∪F and edges (i, α) for each i ∈ α, called
a factor graph.

A probability distribution q will often be defined by
normalizing a given measure m:

q(x) =
m(x)

∑

x′ m(x′)
(3)

When there is no room for confusion, for each such q we
will define the normalization constant Zq ≡

∑

xm(x)
and unnormalized measure q̃(x) ≡ m(x) = Zqq(x).

2.2 BELIEF PROPAGATION

Belief propagation (BP) is a well-known algorithm for
approximate inference in graphical models. It is ex-
act on models represented by singly-connected factor
graphs, but often gives good results on other models.

BP consists of propagating the following messages
along edges of G, until convergence:

niα(xi)←
1

Zniα

ψi(xi)
∏

β∼i\α

mβi(xi) (4)

mαi(xi)←
1

Zmαi

∑

xα\i

ψα(xα)
∏

j∼α\i

njα(xj) (5)

This yields estimates for variable and factor marginals:

Pi(xi) ≈ bi(xi) =
1

Zbi

ψi(xi)
∏

α∼i

mαi(xi) (6)

Pα(xα) ≈ bα(xα) =
1

Zbα

ψα(xα)
∏

i∼α

niα(xi) (7)

BP also provides an estimate of ZP using the Bethe
free energy:

− logZP ≈FBethe ≡
∑

α

∑

xα

bα(xα) log

(

bα(xα)

ψα(xα)

)

+
∑

i

∑

xi

bi(xi) log

(

bi(xi)

ψi(xi)

)

−
∑

i

∑

xi

|i| bi(xi) log (bi(xi)) (8)

2.3 CONDITIONING

One technique for improving the performance of BP
(and indeed any inference algorithm providing an es-
timate of ZP) is based on divide-and-conquer: either

apply BP to a model, or write the model as a sum
of simpler models, recurse, and combine the resulting
approximate marginals using the ZP estimates. We
can express such a decomposition using a “condition”
variable c:

P̃ (x) = P̃ (x)(Ic + I¬c) ≡ P̃ (x|c) + P̃ (x|¬c) (9)

ZP = ZP (|c) + ZP (|¬c) (10)

Dividing equation 9 by equation 10 yields the more
familiar

P (x) = P (x|c)P (c) + P (x|¬c)P (¬c) (11)

where P (c) ≡
ZP (|c)

ZP
and P (¬c) ≡

ZP (|¬c)

ZP
.

In general we will refer to any combination of BP and
conditioning using divide-and-conquer as “conditioned
BP” or CBP.

The cutset conditioning algorithm is a special case of
CBP, conditioning on a set of variables (the cutset)
whose removal makes G singly connected. Since BP
is exact on trees, the cutset conditioning algorithm is
also exact. The drawback of cutset conditioning is that
its complexity is exponential in the cutset size, so it is
only applicable to small or tree-like graphs.

In this paper, we will only consider conditions c of
the form {xi = x̂i} for some variable i and state x̂i.
Then Ic(x) = δx̂i

(xi) and I¬c(x) = 1− δx̂i
(xi), so the

two submodels replace the original factor ψi(xi) with
δx̂i
ψi(xi) and (1− δx̂i

)ψi(xi), respectively. In the first
submodel, the variable xi is “clamped” to the state x̂i,
and in the second it is required to take any state but
x̂i (there may be more than one). Each sub-model has
fewer states than the original, without extending the
original factor graph; so we might hope that combining
the submodels would yield more accurate approximate
marginals, in analogy to Rao-Blackwellization which
applies to sampled estimates. Empirically, the com-
bined BP estimates are usually but not always more
accurate (section 3).

At each level of recursion, a CBP implementation has
to decide which variable to clamp to which value. How
do we go about making this decision? One simple
method is to choose a random variable and value (per-
haps restricting our choice to states with positive BP
marginal). As far as we know, this paper is the first to
explore other algorithms for choosing condition vari-
ables.

Our proposal is based on the following idea: because
BP uses local messages, it poorly represents corre-
lations between distant variables. Since CBP must
rely on conditioning to capture distant correlations, it
should condition on variables whose potentials have

Eaton, Ghahramani

the greatest influence on the rest of the graph. Condi-
tioning on a set X ′

i ⊆ Xi has the same effect as setting
to zero any value of ψi(xi) with xi /∈ X

′
i . We propose

that the notion of “influence” of a variable i and value
xi can be usefully approximated as the effect of in-
finitesimal variation of ψi(xi) on some function of the
BP beliefs, call it V (b). Although we can measure the
change in V directly by clamping each variable i in the
graph to each possible value xi and running BP, such
a procedure would have time complexity quadratic in
the number of graph variables. If we can make do with
querying infinitesimal changes in V , then we only need
the derivatives dV

dψi(xi)
. We can compute a full set of

such derivatives in linear time complexity using a stan-
dard technique called back-propagation.

2.4 BACK-PROPAGATION AND BP

In this section, we will apply back-propagation to be-
lief propagation, deriving an iterative algorithm for es-
timating the gradient of any differentiable objective
function of the BP beliefs. We will refer to this algo-
rithm as back-belief-propagation or BBP.

The BP updates may not converge when initialized at
a given point in the configuration space of factors and
initial messages, but if they do, then typically there
will be a smooth function between some open ball in
that space, and the BP approximate marginals. The
derivatives of this function are well-defined, and are
what we seek to calculate.

Back-propagation computes the derivatives of a com-
mon objective function V with respect to various quan-
tities y, which we will abbreviate (not following any
existing convention) as

d/y ≡
dV

dy
(12)

This is called the adjoint of y (with respect to V).
Given V (f(y), g(y)), we can apply the chain rule to
compute d/y = ∂f

∂y
d/f + ∂g

∂y
d/g. This process can be ex-

tended to general function compositions and is called
back-propagation or reverse-mode automatic differen-
tiation (Griewank, 1989).

Given a normalized distribution q(x) = 1
Zq
q̃(x) as in

equation 3, we can calculate d/q̃ from d/q and Zq:

d/q̃(x) =
1

Zq

(

d/q(x)−
∑

x′

q(x′)d/q(x′)

)

(13)

(provided that V doesn’t depend explicitly on Zq) We
can assume that the BP messages are updated in par-
allel, and index them with a variable t ∈ [0, T]. Then,
given an objective function specified in terms of BP

ψi

ψα

ntiα

mt
αi

bα

bi

V

Figure 1: Functional dependencies of BP

beliefs V (b), we can compute the adjoints of the fac-
tors ψi and ψα by following the BP messages back-
wards through time. The functional dependencies are
depicted in figure 1. Using the chain rule, we can de-
rive equations for the back-propagation of BP message
and factor adjoints (see appendix1, section 5.1).

To use these equations, we must save the message nor-
malizers from the BP run, since we need to calculate
unnormalized adjoints from the normalized adjoints
with equation (13) (e.g. to calculate d/ñiα from d/niα
requires Zniα

).

We should be able to take T → ∞ and get sensible
answers. But the factor adjoints involve a sum of the
message adjoints over time, which would diverge if the
message adjoints did not converge to zero. In fact,
for non-degenerate problems BP converges to attrac-
tive fix-points, which means that to a certain extent
it is insensitive to the initial values of messages. This
means that if we go far enough back in time, the mes-
sages have diminishing contribution to the final beliefs,
and their adjoints should converge to zero as required.
In this way, the BBP algorithm is both sensitive to ini-
tial conditions (which specify the objective function),
and convergent to a stable fixed point.

The equations can be simplified. Since BP will have
converged, we can assume the messages are constant
with respect to time, and drop the t superscripts from
the BP messages (and their normalizers).

Furthermore, the factor adjoints d/ψi(xi) and d/ψα(xα)
are expressed as initial values plus a sum involving
message adjoints over time. We can compute such
quantities incrementally, by making sure that each
time we update a message adjoint, we also update the
appropriate factor adjoint.

This yields the following algorithm:

Algorithm (BPP)

Input: The beliefs and messages (and normalizers
thereof) of a BP run, also an objective function V (b)
defining initial adjoints d/bi and d/bα

1If the appendix is not at the end of this
paper, an extended paper with appendix can be
downloaded from http://mlg.eng.cam.ac.uk/frederik/
aistats2009_choosing.php

http://mlg.eng.cam.ac.uk/frederik/aistats2009_choosing.php
http://mlg.eng.cam.ac.uk/frederik/aistats2009_choosing.php

Choosing a Variable to Clamp

Output: d/ψi(xi), d/ψα(xα)

Precompute the following quantities:

Tiα(xi) =
∏

β∼i\α

mβi(xi) (14)

Uαi(xα) =
∏

j∼α\i

njα(xj) (15)

Siαj(xi, xj) =
∑

xα\i\j

ψα(xα)
∏

k∼α\i\j

nkα(xk) (16)

Rαiβ(xi) = ψi(xi)
∏

γ∼i\α\β

mγi(xi) (17)

Initialize:

d/ψi(xi)←

(

∏

α∼i

mαi(xi)

)

d/b̃i(xi) (18)

d/ψα(xα)←

(

∏

i∼α

niα(xi)

)

d/b̃α(xα) (19)

d/niα(xi)←
∑

xα\i

ψα(xα)
∏

j∼α\i

njα(xj)d/b̃α(xα) (20)

d/mαi(xi)← ψi(xi)
∏

β∼i\α

mβi(xi)d/b̃i(xi) (21)

Then, apply the following updates in parallel (for ev-
ery factor α and variable i) until the message adjoints
converge to zero:

d/ψi(xi)← d/ψi(xi) + Tiα(xi)d/ñiα(xi) (22)

d/niα(xi)←
∑

j∼α\i

∑

xj

Siαj(xi, xj)d/m̃αj(xj) (23)

d/ψα(xα)← d/ψα(xα) + Uαi(xα)d/m̃αi(xi) (24)

d/mαi(xi)←
∑

β∼i\α

Rαiβ(xi)d/ñiβ(xi) (25)

The individual updates, which must be performed for
each edge in the factor graph until convergence, are
(assuming a bounded state-space for each variable) of
complexity quadratic in the largest number of vari-
ables in a given factor, and in the largest number of
factors containing a given variable.

2.4.1 Sequential Updates

The above parallel algorithm occasionally suffers from
numerical stability problems. It is straightforward
(but slightly more involved) to derive a sequential al-
gorithm which computes the same quantities, one mes-
sage at a time, by ensuring that mt+1

αi = mt
αi for all

but one (α, i) (see appendix, figure 5). The sequential
algorithm has the same time complexity as the above,
but it allows us to fine-tune the order in which up-
dates are performed. In particular, we can record the

order in which BP messages are sent (which may be
according to a dynamic schedule as in RBP (Elidan
et al., 2006) or its refinements (Sutton & McCallum,
2007)), and send BBP messages in the reverse of this
order. Empirically, this method yields slightly better
convergence than the parallel algorithm, and is there-
fore used throughout the experiments (section 3), with
BP messages scheduled as in RBP. However, only the
results for the “alarm” graph (figure 4) were noticeably
improved by the use of sequential BBP updates.

2.5 CBP-BBP

We have not yet addressed the question of which ob-
jective function to use with BBP. There are several
possibilities, and the following proposal seems to per-
form well. The performance of some other objective
functions is shown in the appendix (figure 7).

We use a brief run of Gibbs sampling to select a ran-
dom state x⋆ of the model. Then we define

V G,x⋆

({bα}α) =
∑

α

bα(x⋆α) (26)

The intuition behind this choice is that we want to
find a condition which “pushes” the model’s beliefs in
a certain direction. If the model’s probability mass is
concentrated in several modes, then we expect Gibbs
sampling to find a sample x⋆ from one of them; the
objective function V G,x

⋆

then helps us find a variable
which pushes the beliefs in the direction of that mode.

The complete CBP-BBP algorithm becomes

Algorithm (CBP-BBP)

Input: A graphical model, and a maximum number of
variables to clamp

Output: A set of approximate beliefs, and an approx-
imate Z

1. Run BP. If the maximum number of variables have
been clamped, return the BP beliefs and estimated Z.
Otherwise,

2. Run Gibbs sampling to get a state x⋆

3. Run BBP with V = V G,x⋆

4. Find the pair (i, xi) with largest d/ψi(xi)

5. Clamp variable i to xi and recurse

6. Clamp variable i to Xi \ xi and recurse

7. Combine the results from steps 5 and 6 as described
in section 2.3

An implementation of this algorithm based on libDAI
(Mooij, 2008) can be downloaded with the extended
version of the paper.

Eaton, Ghahramani

Random regular graph, 25 variables and 30 factors size 3

binary 4-ary

3
m

o
d
es

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

0 2 4 6 8 10 12

A
v
er

a
g
e

er
ro

r

Levels

CBP-BBP
CBP-rand

CBP-explore
0.0001

0.001

0.01

0.1

1

0 2 4 6 8 10 12

A
v
er

a
g
e

er
ro

r

Levels

CBP-BBP
CBP-rand

CBP-explore

σ
=

1

0.0001

0.001

0.01

0.1

0 2 4 6 8 10 12

A
v
er

a
g
e

er
ro

r

Levels

CBP-BBP
CBP-rand

CBP-explore

0.001

0.01

0.1

0 2 4 6 8 10 12

A
v
er

a
g
e

er
ro

r

Levels

CBP-BBP
CBP-rand

CBP-explore

8 by 8 square grid

binary 4-ary

3
m

o
d
es

1e-06

1e-05

0.0001

0.001

0.01

0 2 4 6 8 10 12

A
v
er

a
g
e

er
ro

r

Levels

CBP-BBP
CBP-rand

CBP-explore
0.01

0.1

1

0 2 4 6 8 10 12

A
v
er

a
g
e

er
ro

r

Levels

CBP-BBP
CBP-rand

CBP-explore

σ
=

1

1e-05

0.0001

0.001

0.01

0 2 4 6 8 10 12

A
v
er

a
g
e

er
ro

r

Levels

CBP-BBP
CBP-rand

CBP-explore
0.001

0.01

0 2 4 6 8 10 12

A
v
er

a
g
e

er
ro

r

Levels

CBP-BBP
CBP-rand

CBP-explore

Figure 2: Comparisons of BBP clamping (CBP-BBP) to random clamping (CBP-rand) and “exploratory” clamp-
ing (CBP-explore), on eight example graphs.

Choosing a Variable to Clamp

Random regular graph, 25 variables and 30 factors size 3

binary 4-ary

3
m

o
d
es

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0.001 0.01 0.1 1 10 100 1000

A
v
er

a
g
e

er
ro

r

time

BP
MF

TREEEP

LCBP

CBP-BBP
CBP-rand

CBP-explore
Gibbs

0.0001

0.001

0.01

0.1

1

0.001 0.01 0.1 1 10 100 1000 10000

A
v
er

a
g
e

er
ro

r

time

BP MF TREEEP
CBP-BBP
CBP-rand

CBP-explore
Gibbs

σ
=

1

1e-05

0.0001

0.001

0.01

0.1

1

0.001 0.01 0.1 1 10 100 1000

A
v
er

a
g
e

er
ro

r

time

BP

MF

TREEEP

LCBP

CBP-BBP
CBP-rand

CBP-explore
Gibbs

0.0001

0.001

0.01

0.1

1

0.001 0.01 0.1 1 10 100 1000 10000

A
v
er

a
g
e

er
ro

r

time

BP

MF

TREEEP

CBP-BBP
CBP-rand

CBP-explore
Gibbs

8 by 8 square grid

binary 4-ary

3
m

o
d
es

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0.001 0.01 0.1 1 10 100 1000 10000

A
v
er

a
g
e

er
ro

r

time

BP

MF

TREEEP

LCBP

MR

GBP

HAK

CBP-BBP
CBP-rand

CBP-explore
Gibbs

0.0001

0.001

0.01

0.1

1

0.001 0.01 0.1 1 10 100 1000 10000

A
v
er

a
g
e

er
ro

r

time

BP
MF

TREEEP
LCBP

GBP

HAK

CBP-BBP
CBP-rand

CBP-explore
Gibbs

σ
=

1

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0.001 0.01 0.1 1 10 100 1000 10000

A
v
er

a
g
e

er
ro

r

time

BP

MF

TREEEP

LCBP

MR

GBP

HAK

CBP-BBP
CBP-rand

CBP-explore
Gibbs

1e-05

0.0001

0.001

0.01

0.1

1

0.001 0.01 0.1 1 10 100 1000 10000

A
v
er

a
g
e

er
ro

r

time

BP

MF

TREEEP

LCBP

GBP

HAK

CBP-BBP
CBP-rand

CBP-explore
Gibbs

Figure 3: Performance for different versions of CBP and other standard approximate inference algorithms. Some
algorithms, such as LCBP and MR, required too much time or memory to run on some graphs (such as those
with 4-ary variables and random regular topology).

Eaton, Ghahramani

3 EXPERIMENTS

Our experiments use 8 graphical models, representing
23 combinations of topology (square grid, random reg-
ular), variable arity (2, 4), and potential initialization
(modes, random). The “random” potentials are cre-
ated by setting each factor entry to exp(σW) where W
is a standard normal deviate and σ = 1. The “modes”
potentials are created by choosing 3 random configu-
rations x⋆,1...3 for the graph variables, and setting each
factor entry ψα(xα) to some constant c if it is consis-
tent with one or more of them (i.e. xα = x⋆,kα for some
k) and to 1 otherwise. We arbitrarily choose c to be
4. This is a way of creating graphs with long-distance
correlations. Most of the model’s probability mass will
be concentrated in the 3 selected “modes”.

Our first task is to establish that the CBP-BBP algo-
rithm chooses better conditioning variables than ran-
dom (“CBP-rand”), for a fixed number of variables
(“clamping level”). These results are shown in figure
2. In all the plots in this paper, each CBP-BBP and
CBP-rand data point shows the result of averaging er-
ror and timing data for 5 runs of the algorithm. The er-
rors are computed as total variation distance2 between
our single-node marginals, and exact marginals (cal-
culated by the junction tree algorithm with HUGIN
updates (Jensen et al., 1990)).

In each model, CBP-BBP is usually better than CBP-
rand at a given level, but the difference is sometimes
small. Also included for comparison is an algorithm
“CBP-explore” which (as suggested at the end of 2.3)
prospectively clamps each variable to each value, runs
BP each time, and chooses the (variable,value) pair
which produces marginals that are maximally differ-
ent (L1 distance) from the current marginals. This is
slower than CBP-rand or CBP-BBP, being quadratic
in the size of the graph, but gives an interesting com-
parison and often produces more accurate results. We
are not sure why CBP-BBP is sometimes more accu-
rate than CBP-explore.

Next, we compare the performance of CBP-BBP to
other algorithms.

Gibbs - Gibbs sampling, using runs with from 1000
to 1e7 samples

BP - Belief Propagation

MF - Mean Field

TreeEP - algorithm of Minka and Qi (Minka & Qi,
2004)

GBP - Generalized Belief Propagation (Yedidia et al.,
2001), using loops of size 4

2 1

2

P

x
|P (x) −Q(x)|

HAK - algorithm of Heskes, Albers, and Kappen
(Heskes et al., 2003), using loops of size 4

LCBP - Loop Corrected Belief Propagation (full cav-
ities) (Mooij et al., 2007)

MR - algorithm of (Montanari & Rizzo, 2005)

The last two algorithms are based on propagating cav-
ity distributions and have complexity exponential in
cavity size. The random regular graphs of arity > 2
have cavities which are too large, so these algorithms
can only be tested on the other graphs. Also, MR re-
quires binary variables and could not be run on the
4-ary graphs.

Figure 3 shows the results of these experiments. No-
tice that CBP-BBP still typically dominates CBP-
rand, not just by clamping level but by runtime as
well, even though it is usually somewhat slower due to
the overhead of BBP3. Gibbs sampling eventually per-
forms better than our algorithm, for long runs. Figure
4 shows per-level comparisons and performance plots
for the “alarm” graph, which is part of libDAI. There
were convergence problems for BP and BBP on this
graph, which may explain the poor results.

Our implementation of both CBP-BBP and CBP-rand
include the optimization of not clamping a variable
whose BP marginal is already close to 0 or 1. The num-
ber of levels of recursion is otherwise fixed. We have
experimented with heuristics for controlling recursion
depth automatically, for instance recursing until the
current Z estimate is smaller than a certain fraction of
the top-level Z, but these did not have notably differ-
ent performance than fixed-level recursion (appendix,
figure 6).

4 DISCUSSION

We have presented an approximate inference algorithm
which combines BP and variable conditioning. The
time complexity of the algorithm is proportional to the
cost of a BP run, the square of the maximum variable
or factor degree, and is exponential in the number of
clamped variables. This “clamping level” can be spec-
ified by the user to achieve a desired speed/accuracy
trade-off. One advantage of our algorithm is that it can
be applied to models with large or densely connected
graphs, unlike LCBP or GBP. It seems particularly
promising on models with long-range correlations be-
tween variables.

3In our experiments, CBP-rand is up to 2.1 times faster
than CBP-BBP for a fixed level of clamping. Sometimes,
however, due to faster convergence of the BP runs in CBP-
BBP, CBP-rand is slower (by up to about 1.5 times).

Choosing a Variable to Clamp

Acknowledgements

BBP was implemented using Joris Mooij’s libDAI
(Mooij, 2008). The authors would also like to thank
Joris Mooij for useful discussions.

References

Bethe, H. (1935). Statistical Theory of Superlattices.
Proceedings of the Royal Society of London. Series
A, Mathematical and Physical Sciences, 150, 552–
575.

Darwiche, A. (2001). Recursive conditioning. Artificial
Intelligence, 126, 5–41.

Elidan, G., McGraw, I., & Koller, D. (2006). Resid-
ual belief propagation: Informed scheduling for
asynchronous message passing. Proceedings of the
Twenty-second Conference on Uncertainty in AI
(UAI), Boston, Massachussetts (pp. 6–4).

Gallager, R. (1963). Low Density Parity Check Codes.
Number 21 in Research monograph series.

Griewank, A. (1989). On automatic differentiation.
Mathematical Programming: Recent Developments
and Applications, 83–108.

Heskes, T., Albers, K., & Kappen, B. (2003). Ap-
proximate inference and constrained optimization.
Uncertainty in Artificial Intelligence (pp. 313–320).

Jensen, F., Olesen, K., & Andersen, S. (1990). An
algebra of Bayesian belief universes for knowledge-
based systems. Networks, 20.

Kikuchi, R. (1951). A Theory of Cooperative Phenom-
ena. Physical Review, 81, 988–1003.

Minka, T. (2001). Expectation propagation for ap-
proximate Bayesian inference. Uncertainty in Arti-
ficial Intelligence (pp. 362–369).

Minka, T., & Qi, Y. (2004). Tree-structured approx-
imations by expectation propagation. Advances in
Neural Information Processing Systems 16: Proceed-
ings of the 2003 Conference (p. 193).

Montanari, A., & Rizzo, T. (2005). How to com-
pute loop corrections to the Bethe approximation.
Journal of Statistical Mechanics: Theory and Ex-
periment, 10, P10011.

Mooij, J. (2008). libDAI 0.2.2: A free/open source
C++ library for Discrete Approximate Inference
methods. http://mloss.org/software/view/77/.

Mooij, J., Wemmenhove, B., Kappen, H., & Rizzo,
T. (2007). Loop corrected belief propagation. Pro-
ceedings of the Eleventh International Conference on
Artificial Intelligence and Statistics (AISTATS-07).

Pearl, J. (1988). Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Morgan
Kaufmann.

Pelizzola, A. (2005). Cluster variation method in sta-
tistical physics and probabilistic graphical models.
J. Phys. A: Math. Gen, 38, R309–R339.

Sutton, C., & McCallum, A. (2007). Improved dy-
namic schedules for belief propagation. Uncertainty
in Artifical Intelligence (UAI).

Yedidia, J., Freeman, W., & Weiss, Y. (2000). Bethe
free energy, Kikuchi approximations and belief prop-
agation algorithms. Advances in Neural Information
Processing Systems, 13.

Yedidia, J., Freeman, W., & Weiss, Y. (2001). Gener-
alized belief propagation. Advances in neural infor-
mation processing systems, 689–695.

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0.001 0.01 0.1 1 10 100 1000

A
v
er

a
g
e

er
ro

r

time

BP

MF

TREEEP

LCBP

CBP-BBP
CBP-rand

CBP-explore
Gibbs

0.0001

0.001

0.01

0 2 4 6 8 10 12

A
v
er

a
g
e

er
ro

r

Levels

CBP-BBP
CBP-rand

CBP-explore

Figure 4: Performance on “alarm” graph; level com-
parison to CBP-rand on same graph

http://mloss.org/software/view/77/

Eaton, Ghahramani

5 APPENDIX

5.1 BBP DERIVATION

Applying the chain rule to the message representation in section 2.2 yields the following equations:

d/ψi(xi) =

Y

α∼i

m
T
αi(xi)

!

d/b̃i(xi) +

T
X

t=1

X

α∼i

0

@

Y

β∼i\α

m
t−1

βi (xi)

1

A d/ñt
iα(xi) (27)

d/ψα(xα) =

X

i∼α

n
T
iα(xi)

!

d/b̃α(xα) +
T
X

t=1

X

i∼α

0

@

Y

j∼α\i

n
t−1

jα (xj)

1

A d/m̃t
αi(xi) (28)

d/nt
iα(xi) = δ

T
t

X

xα\i

0

@ψα(xα)
Y

j∼α\i

n
T
jα(xj)

1

A d/b̃α(xα) + (1 − δ
T
t)

X

j∼α\i

X

xj

0

@

X

xα\i\j

ψα(xα)
Y

k∼α\i\j

n
t
kα(xk)

1

A d/m̃t+1

αj (xj)

(29)

d/mt
αi(xi) = δ

T
t

0

@ψi(xi)
Y

β∼i\α

m
T
βi(xi)

1

A d/b̃(xi) + (1 − δ
T
t)

X

β∼i\α

0

@ψi(xi)
Y

γ∼i\α\β

m
t
γi(xi)

1

A d/ñt+1

iβ (xi) (30)

To derive a sequential update rule, we use a different message representation, which sends only a single message
Et = (α, i) at time t. This representation also includes a damping factor λ, which should be 1 for no damping.

b̃α(xα) = ψα(xα)
∏

i∼α

niα(xi) (31)

b̃i(xi) = ψi(xi)
∏

α∼i

mαi(xi) (32)

ñtiα(xi) = ψi(xi)
∏

β∼i\α

mt
βi(xi) (33)

˜̂mt
αi(xi) =

∑

xα\i

ψα(xα)
∏

j∼α\i

ntjα(xj) (34)

mt+1
αi (xi) = (m̂t

αi(xi))
λδ

(α,i)

Et (mt
αi(xi))

1−λδ
(α,i)

Et (35)

Here is a diagram of the dependencies in the new message equations:

ψi

ψα

ntiα

mt
αim̂t

αi

bα

bi

V

Computing adjoints and eliminating t superscripts for messages (having converged), and noting that at conver-
gence m̂αi(xi) = mαi(xi), and using pre-computed quantities T , U , S, and R (equations 14, 15, 16, 17) yields:

d/ψi(xi) = d/b̃i(xi)
∏

α∼i

mαi(xi) +

T
∑

t=0

∑

α∼i

d/ñtiα(xi)Tiα(xi) (36)

d/ψα(xα) = d/b̃α(xα)
∏

i∼α

niα(xi) +
T
∑

t=0

∑

i∼α

d/ ˜̂mt
αi(xi)Uαi(xα) (37)

d/ntiα(xi) = δTt
∑

xα\i

d/b̃α(xα)ψα(xα)
∏

j∼α\i

njα(xj) +
∑

j∼α\i

∑

xj

d/ ˜̂mt
αj(xj)Siαj(xi, xj) (38)

d/mt
αi(xi) = δTt d/b̃i(xi)ψi(xi)

∏

β∼i\α

mt
βi(xi) + (1− λδ

(α,i)
Et)d/mt+1

αi (xi) +
∑

β∼i\α

d/ñtiβ(xi)Rαiβ(xi) (39)

d/m̂t
αi(xi) = λδ

(α,i)
Et d/mt+1

αi (xi) (40)

Choosing a Variable to Clamp

Which updates must be performed when Et = (α, i)? Note that Et = (α, i) ⇐⇒ d/m̂t
αi(xi) 6= 0. In that case,

d/ntjα(xj) > 0 for j ∼ α \ i. Then d/mt
βj(xj) incremented for j ∼ α \ i and β ∼ j \ α.

By eliminating d/niα, which is mostly zero after initialization, we only need keep quantities d/mαi(xi), d/ψi(xi),
d/ψα(xα) between messages. The final algorithm is shown in figure 5.

Definitions:

Tiα(xi) =
∏

β∼i\α

mβi(xi) (41)

Uαi(xα) =
∏

j∼α\i

njα(xj) (42)

Siαj(xi, xj) =
∑

xα\i\j

ψα(xα)
∏

k∼α\i\j

nkα(xk) (43)

Rαiβ(xi) = ψi(xi)
∏

γ∼i\α\β

mγi(xi) (44)

Routines:
Send-niα (f(xi)) =

f̃(xi) = 1
Zniα

(

f(xi)−
∑

x′
i
niα(x′i)f(x′i)

)

d/ψi(xi)← d/ψi(xi) + f̃(xi)Tiα(xi)
For each β ∼ i \ α do:
d/mβi(xi)← d/mβi(xi) + f̃(xi)Rβiα(xi)

Send-mαi =
d/ψα(xα)← d/ψα(xα) + λd/m̃αi(xi)Uαi(xα)
For each j ∼ α \ i do:

Send-njα
(

λ
∑

xi
d/m̃αi(xi)Sjαi(xj , xi)

)

d/mαi(xi)← (1− λ)d/mαi(xi)
Initialization:

d/ψi(xi)← d/b̃i(xi)
∏

α∼i

mαi(xi) (45)

d/ψα(xα)← d/b̃α(xα)
∏

i∼α

niα(xi) (46)

d/mαi(xi)← d/b̃i(xi)ψi(xi)
∏

β∼i\α

mβi(xi) (47)

For each i, α do:

Call Send-niα

(

∑

xα\i
d/b̃α(xα)ψα(xα)

∏

j∼α\i njα(xj)
)

Main loop:
Call Send-mαi for each message (α, i) sent by BP

Figure 5: A sequential BBP algorithm

Eaton, Ghahramani

Random regular graph, 25 variables and 30 factors size 3

binary 4-ary

3
m

o
d
es

1e-06

1e-05

0.0001

0.001

0.01

0.1

0.01 0.1 1 10 100

A
v
er

a
g
e

er
ro

r

time

fixed
logz
bdiff

0.001

0.01

0.1

1

0.01 0.1 1 10 100

A
v
er

a
g
e

er
ro

r

time

fixed
logz
bdiff

σ
=

1

0.0001

0.001

0.01

0.1

0.001 0.01 0.1 1 10 100

A
v
er

a
g
e

er
ro

r

time

fixed
logz
bdiff

0.001

0.01

0.1

0.01 0.1 1 10 100

A
v
er

a
g
e

er
ro

r

time

fixed
logz
bdiff

8 by 8 square grid

binary 4-ary

3
m

o
d
es

0.0001

0.001

0.01

0.001 0.01 0.1 1 10 100

A
v
er

a
g
e

er
ro

r

time

fixed
logz
bdiff

0.001

0.01

0.1

1

0.01 0.1 1 10 100

A
v
er

a
g
e

er
ro

r

time

fixed
logz
bdiff

σ
=

1

0.0001

0.001

0.01

0.001 0.01 0.1 1 10 100

A
v
er

a
g
e

er
ro

r

time

fixed
logz
bdiff

0.001

0.01

0.01 0.1 1 10 100

A
v
er

a
g
e

er
ro

r

time

fixed
logz
bdiff

Figure 6: Performance comparison of variable-level to fixed-level clamping. “Logz” recurses until fraction of
current Z to original Z is below specified tolerance. “Bdiff” is the same, but fraction is scaled by difference
between new and original beliefs. The tolerance runs from 1e-1 to 1e-5.

Choosing a Variable to Clamp

Random regular graph, 25 variables and 30 factors size 3

binary 4-ary
3

m
o
d
es

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

0 2 4 6 8 10 12

A
ve

ra
ge

er
ro

r

Levels

Gibbs-b
Gibbs-b-factor

Gibbs-b2
Gibbs-b2-factor

Gibbs-exp
Gibbs-exp-factor

var-entropy
factor-entropy
Bethe-entropy
CBP-explore

CBP-rand
0.0001

0.001

0.01

0.1

1

0 2 4 6 8 10 12

A
ve

ra
ge

er
ro

r

Levels

Gibbs-b
Gibbs-b-factor

Gibbs-b2
Gibbs-b2-factor

Gibbs-exp
Gibbs-exp-factor

var-entropy
factor-entropy
Bethe-entropy
CBP-explore

CBP-rand

σ
=

1

1e-05

0.0001

0.001

0.01

0.1

0 2 4 6 8 10 12

A
ve

ra
ge

er
ro

r

Levels

Gibbs-b
Gibbs-b-factor

Gibbs-b2
Gibbs-b2-factor

Gibbs-exp
Gibbs-exp-factor

var-entropy
factor-entropy
Bethe-entropy
CBP-explore

CBP-rand

0.001

0.01

0.1

0 2 4 6 8 10 12

A
ve

ra
ge

er
ro

r

Levels

Gibbs-b
Gibbs-b-factor

Gibbs-b2
Gibbs-b2-factor

Gibbs-exp
Gibbs-exp-factor

var-entropy
factor-entropy
Bethe-entropy
CBP-explore

CBP-rand

8 by 8 square grid

binary 4-ary

3
m

o
d
es

1e-06

1e-05

0.0001

0.001

0.01

0 2 4 6 8 10 12

A
ve

ra
ge

er
ro

r

Levels

Gibbs-b
Gibbs-b-factor

Gibbs-b2
Gibbs-b2-factor

Gibbs-exp
Gibbs-exp-factor

var-entropy
factor-entropy
Bethe-entropy
CBP-explore

CBP-rand
0.001

0.01

0.1

1

0 2 4 6 8 10 12

A
ve

ra
ge

er
ro

r

Levels

Gibbs-b
Gibbs-b-factor

Gibbs-b2
Gibbs-b2-factor

Gibbs-exp
Gibbs-exp-factor

var-entropy
factor-entropy
Bethe-entropy
CBP-explore

CBP-rand

σ
=

1

1e-05

0.0001

0.001

0.01

0 2 4 6 8 10 12

A
ve

ra
ge

er
ro

r

Levels

Gibbs-b
Gibbs-b-factor

Gibbs-b2
Gibbs-b2-factor

Gibbs-exp
Gibbs-exp-factor

var-entropy
factor-entropy
Bethe-entropy
CBP-explore

CBP-rand
0.001

0.01

0 2 4 6 8 10 12

A
ve

ra
ge

er
ro

r

Levels

Gibbs-b
Gibbs-b-factor

Gibbs-b2
Gibbs-b2-factor

Gibbs-exp
Gibbs-exp-factor

var-entropy
factor-entropy
Bethe-entropy
CBP-explore

CBP-rand

Figure 7: Comparison of different cost functions by clamping level: Gibbs-b (CBP-BBP): V =
∑

i bi(x
⋆
i). Gibbs-

b2: V =
∑

i bi(x
⋆
i)

2. Gibbs-exp: V =
∑

i exp(bi(x
⋆
i)). Gibbs-b-factor: V =

∑

α bα(x⋆α) (similarly for Gibbs-
b2-factor, Gibbs-exp-factor). var-entropy: V =

∑

iH(bi). factor-entropy: V =
∑

αH(bα). Bethe-entropy:
V = FBethe.

Eaton, Ghahramani

Random regular graph, 25 variables and 30 factors size 3

binary 3-ary 4-ary

3
m

o
d
es

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0.001 0.01 0.1 1 10 100 1000

A
v
er

a
g
e

er
ro

r

time

BP
MF

TREEEP

LCBP

CBP-BBP
CBP-rand

CBP-explore
Gibbs

0.0001

0.001

0.01

0.1

1

0.001 0.01 0.1 1 10 100 1000

A
v
er

a
g
e

er
ro

r

time

BP MF

TREEEP

CBP-BBP
CBP-rand

CBP-explore
Gibbs

0.0001

0.001

0.01

0.1

1

0.001 0.01 0.1 1 10 100 1000 10000

A
v
er

a
g
e

er
ro

r

time

BP MF TREEEP
CBP-BBP
CBP-rand

CBP-explore
Gibbs

σ
=

1

1e-05

0.0001

0.001

0.01

0.1

1

0.001 0.01 0.1 1 10 100 1000

A
v
er

a
g
e

er
ro

r

time

BP

MF

TREEEP

LCBP

CBP-BBP
CBP-rand

CBP-explore
Gibbs

0.0001

0.001

0.01

0.1

1

0.001 0.01 0.1 1 10 100 1000

A
v
er

a
g
e

er
ro

r

time

BP

MF

TREEEP

CBP-BBP
CBP-rand

CBP-explore
Gibbs

0.0001

0.001

0.01

0.1

1

0.001 0.01 0.1 1 10 100 1000 10000

A
v
er

a
g
e

er
ro

r

time

BP

MF

TREEEP

CBP-BBP
CBP-rand

CBP-explore
Gibbs

8 by 8 square grid

binary 3-ary 4-ary

3
m

o
d
es

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0.001 0.01 0.1 1 10 100 1000 10000

A
v
er

a
g
e

er
ro

r

time

BP

MF

TREEEP

LCBP

MR

GBP

HAK

CBP-BBP
CBP-rand

CBP-explore
Gibbs

1e-05

0.0001

0.001

0.01

0.1

1

0.001 0.01 0.1 1 10 100 1000

A
v
er

a
g
e

er
ro

r

time

BP

MF

TREEEP

LCBP

GBP

HAK

CBP-BBP
CBP-rand

CBP-explore
Gibbs

0.0001

0.001

0.01

0.1

1

0.001 0.01 0.1 1 10 100 1000 10000

A
v
er

a
g
e

er
ro

r

time

BP
MF

TREEEP
LCBP

GBP

HAK

CBP-BBP
CBP-rand

CBP-explore
Gibbs

σ
=

1

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0.001 0.01 0.1 1 10 100 1000 10000

A
v
er

a
g
e

er
ro

r

time

BP

MF

TREEEP

LCBP

MR

GBP

HAK

CBP-BBP
CBP-rand

CBP-explore
Gibbs

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0.001 0.01 0.1 1 10 100 1000

A
v
er

a
g
e

er
ro

r

time

BP

MF

TREEEP

LCBP

GBP-LOOP4

HAK-LOOP4

CBP-BBP
CBP-rand

CBP-explore
Gibbs

1e-05

0.0001

0.001

0.01

0.1

1

0.001 0.01 0.1 1 10 100 1000 10000

A
v
er

a
g
e

er
ro

r

time

BP

MF

TREEEP

LCBP

GBP

HAK

CBP-BBP
CBP-rand

CBP-explore
Gibbs

Figure 8: Comparison of different variable arities

	INTRODUCTION
	THEORY
	GRAPHICAL MODELS
	BELIEF PROPAGATION
	CONDITIONING
	BACK-PROPAGATION AND BP
	Sequential Updates

	CBP-BBP

	EXPERIMENTS
	DISCUSSION
	APPENDIX
	BBP DERIVATION

