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ABSTRACT

Many numerical algorithms are specified in terms of openation
vectors and matrices. Matrix operations can be executedragty
efficiently using specialized linear algebra kernels in limssuch
as ATLAS or LAPACK. The resulting programs can be orders of
magnitude faster than naive implementations in C, and shise
reason why matrix computation interpreters such at MattabGc-
tave are popular in scientific computing. However, the pseasf
expressing an algorithm in terms of matrices can be erramngr
Typical matrix languages are weakly-typed. If we could esgo
certain properties of operands to a type system, so thatdbesis-
tency could be statically verified by a type checker, then wald/
be able to catch many common errors at compile time. We call
this idea “strongly typed linear algebra” and describe dqiype
implementation in which dimensions are exposed to the type s
tem, which is based on Alberto Ruiz's GSLHaskell [Ruiz(2)05
and uses techniques from Kiselyov and Shan’s “Implicit Gprfi
rations” [Kiselyov and Shan(2004)].

A great advantage of Matlab is the ability iffers scientists to
manipulate and inspect numerical objects interactively 3Now
how to make our library useful for interactive use, using pé&te
Haskell.

Next, we implement a medium-sized machine learning algorit
using our library, and compare it to a similar implementafioOc-
tave. Drawing from this experience, we suggest Haskelllagg
features which might improve the library’s usability. Papk sur-
prisingly, we conclude that performance is not a problena déoe
Haskell. The Haskell version of the program, which take®ssdv
minutes to run, is almost twice as fast as the Octave versioah,
probably comparable to the speed of Matlab.

A basic understanding of Haskell is assumed.
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1. INTRODUCTION

Many numerical algorithms are specified in terms of matrices
and vectors. In addition, a common numerical programminb-te
nique is to express iterative algorithms in terms of operation
vectors and matrices. One class of transformations mightthe
loop

fori=1..n
al[i] =f (b[i])
end
into
a=F (b

whereF is a vectorized version df, in another instance we might
convert

fori=1..n
ali]=0;
forj=1..m
afi] +=wli, j]-b[j]
end
end

into a matrix-vector multiplicatiom = W x b. Because linear al-
gebra has proven to be a very general framework, highly opgidh
libraries have been written to perform common linear algeiper-
ations as ficiently as possible, such as ATLAS (implementing the
standard BLAS interface) and LAPACK.

The source of the speedup which these libraries accompdish u
ally comes from better cache utilization - by breaking a matr
down into blocks and processing it block-by-block, wherehea
block is small enough to fit in the entire L1 cache. In ATLASg th
optimal block-size as well as many other algorithm paramsetee
determined automatically, during compilation of the litysaso the
resulting object code can be specially optimized to a givehitec-
ture. In addition, the libraries may use a CPU'’s vector udtons.
Neither of these optimizations is something that a C compia
very easily accomplish generically. Therefore a naivefjtten C
program can run orders of magnitude more slowly than theseorr
sponding ATLAS routines.

Linear algebra libraries thus enjoy widespread use in tlensc
tific community. They are usually accessed via high-levegpam-
ming languages such as Matlab’s M-code. However, such lan-
guages and even much more sophisticated computer algebra sy
tems are weakly typed. Even in strongly typed languagesstyp
for linear algebra objects are usually limited to distirgiiing be-
tween vectors and matrices, and specifying element typeinfo
stanceVecto(Rea) or Matrix(Complex.

We think that if object dimensions were exposed to the typge sy
tem, then it would be possible to catch a large number of commo
errors at compile time. For instance, matrices can geiyeoally



be multiplied in a certain order - in a matrix multiplicatiénx B,
the number of columns ¢k matches the number of rows Bf But
in Matlab and its clonés if matrices are multiplied in the wrong
order, the error is only caught at runtime. If the type syskept
track of which dimensions matched which, such a mistake dvoul
have been detected at compile time, and what is generallgdcal
“operand conformability” could be statically guarante&tie will
give the name “strongly typed linear algebra” to any tool ethi
makes such static guarantees possible. (Of course, notsafikas
cause operand conformability errors. For instance, a squatrix
has the same dimensions as its inverse, so forgetting td mvea-
trix will not be noticed by a strongly typed linear algebratgm.)
We explore the implementation of a strongly typed lineaehfg
system in the functional programming language Haskell. Hio t
best of our knowledge, it is the first such system to exist.

2. DIMENSIONS AS TYPES

of the result is taken to be the element at indigk) in the source.
Essentially, vectors are functions from indices to elemethie in-
dex type can be seen as occupying a contravariant pdsithus is
why the function argument afliceis b — a rather thara — b.

However, we can also think of a “vector” in the sense of linear
algebra, i.e. one whose elements are taken from a field (atso f
a module, whose elements are taken from a ring), as repiegent
a member of the dual space, which consists of linear maps from
ordinary vectors to members of the field (or ring). In the dygce,
the index type holds a covariant position. Thus, when theetg
type is a number, we have another useful transformationctwhi
complementslice

margin:: (Num ¢ Dom a Dom b =
(@a—-b)-Vea—-Veb
The efect of marginis to map elements of the input according to
the supplied function. Where multiple input index valuespnha:
gether, the elements at those indices are added; when thare i

The main idea is to encode vector dimensions as types. Dimen-output index which is not in the range of the supplied functits

sions are types which are instances of special cl2eg and in-
dices are members of those types. The claes has methods for
complete enumeration of index values, so that given a tygehwh
is an instance obom, we can list the entire range of values which
that type can (legally) have.

class(Bounded aEnum a Ix a, Eq a Show 3 = Dom a
where
domain:: [a]
domainSize: a — Int

Now, for instance, we can define a function with the following
type
vector:Doma= (a—» € »>Vea
to construct vectors. Hed e arepresents a vector with element
type e and index typea. The definition ofvectorwill fill in all of

the elements of the result by calling the given function oargv
value of typea, which is just the list returned byomain

We guarantee that two dimensions match by using the same type

variable for each of them. (Note that this is a stronger cairst
than requiring that the vectors have the same size, becaosiift

ferent domain types may have the same number of elements by

coincidence. However, in such a case we usually won'’t waat th
dimensions to match, so requiring the types to be the same is a
propriate)
For example, the dot product function could have the folfgyvi
type:
(NumeDomg=Vea—-Vea—e

Because both arguments share the same dimensions type&cthe v
tors are guaranteed to be the same length.

As another example, consider the case when we want to extract

a subset of a vector (here, “(!M:e a— a — €' is the subscripting
operation):

slice::(Doma Dombh=(b—a »>Vea—>Veb

slice v f=vector(1i —» v!fi)
For each index of the result vector, the given function is applied,
yielding an index (i) in the source vector. The element at index

Notably Octave, which is developed under the GPL and is mostl
compatible with Matlab; also, Scilab is a mostly-free and ha
syntax similar to Matlab. We only use Octave for experiments
- general benchmarks comparing it to Matlab are hetetp:
//www.sciviews.org/benchmark/index.html Octave seems to be
about two or three times slower than Matlab, but it is cortfan
improving.

element is set to zero. The name comes from probability yheor
from the term “marginal distribution”.

2.1 Matrices

We represent matrices as vectors which are indexed by a pair:
Ve(a b
This is a special case of a vector -afandb are instances of
Dom then @, b) is also an instance:
instance(Dom g Dom B = Dom(a, b) where

Pairs are enumerated in lexicographic order, e.g.:
[(0, 0), (O, 1), (O, 2), ..., (1, 0), (1, 1), ...]

Matrix multiplication has the following signature:
(»):Ve(@hb -Veb c)—Ve(c

We define other common operations with reference to Matldb’s
code syntax:

trace:: Dom a= V e(a, a) » e -- matrix trace

diag::Doma=V a— V (a, a) --diagonal matrix

eye:Doma=V e(a a) --identity matrix

ones zeros:: Dom a= V e a -- vector of ones or zeros
etc. Note that the last three functions don't take any argusye
whereas in Matlab they each take two arguments. The reason is
that in Matlab those arguments serve to specify the dimansio
the result, but here the result dimensions are inferred fromext.
This often leads to more concise code, which is moreovereclos
to typical mathematical notation; however, occasionakyneed to
add type signatures to resolve ambiguities:

slowSize m= trace (ones'asTypeOf m)

2.2 Reflecting Values

We haven't yet said anything about how domain types are cre-
ated.

Consider the task of writing a functiotistVeg which creates a
vector from a list of elements. The size of the list is arbitrave

2In a function type, the return value of a function is a covariao-
sition; any of its arguments are contravariant positionsrévgen-
erally, a position is contravariant if an odd number of itatedning
positions are arguments of functions, and covariant otiserwSo
the position ofa is covariant in & — r) — r, and contravariant in
a—-rork—a—r=k- (a—r),and covariant imandr — a.
3Since matrix multiplication is not commutative, we have o
to use an asymmetric operator.



want to create a vector whose dimension reflects that sizari@l
we will need to find a way to store arbitrary integers in tygdsw-
ever, that is not the only fliculty. What should the type of our
function be? A first attempt might look like:

listVec::[e] >V ea

However, here the type variakdés (implicitly) universally quan-
tified over the entire expression; in other words it canngiethel
upon the argument tiistVec What we need is something like

listVec::[e] - (Aa. V e g
where the result is an existential type. Then, each invooabif
listVeccan choose a new type for the type-variadle

Existential types are not supported directly in Haskell \we
can encode them using universals as follows. The trick isdbas
a slight modification of the CPS (continuation-passingejtidans-
formation.

The CPS transformation encodes values of tgmes values of
type@—r) —>r:

x=Af - fXx

We can reverse the encoding by applying the resudt to 1 x —
x (although this does not give an isomorphism in a non-staiot |
guage, since the encoding was not surjective).

We can look at the transformation fromto (@ — r) — r as
being the same as two applications of, for same

N,a=za—-r
A single application ofN, changes the place @f from covari-

Using those facilities, a complete definitionlistVecis now pos-
sible. The existential type variable is now constraineddab in-
stance oReflectNum

We use the following simple type to represent an index tyge ta
ing on integers between 0 anal{ 1): ©

newtypeL n=L Int
instanceReflectNum r= Dom (L n)

The definition oflistVecfinally becomes:

listVec:: [e] — (Yn. (ReflectNumh=V e(L n) - w) - w
listVec | f =
let n = length lin
reifylntegral n(A (_ ::rn) —
f (fromList I:: (L ::V e(L r))))
wherefromListis a function which converts a list to a vector of
known size.

The drawback of this approach is that the vector is only atatel
to the function argument tlistVeg after listVechas returned, it is
gone. There is no possibility of passifigtVeca function such as
id which returns its own argument, because the typlestfecwill
not allow it. The type variablev can be given any type as long as
that type does not depend anbecausev appears outside afs
guantification expression.

Thus it usually becomes necessary to structure a program as a
argument to a series of functions such as the one above. fitva re
typew is often a monadic action such &3 (); all of the interesting
work - calculations, printing results - will then be done hifit the

ant to contravariant, and can be seen as a kind of negatioa. Th argument tdistvec

encoding of existentials via universafs:
JaT@=WaT@->r)->r=N (Ya N; (T (a))
can then be seen as analogous to the logical equivalence:
IXP(X) = -=¥x:=P(X).
Using this representation, we now have a typdifiiec
listVec::[e] » (VaVea-w) -w

The problem of encoding integers and other values in types is

discussed in detail in [Kiselyov and Shan(2004)], whichwtidoe
referred to for more detail.
paper are the following:

classReflectNum svhere

reflectNum: Num a= s — a
reifylntegral:: Integral a=

a— (Vs ReflectNum s s - w) - w

The functionreifylntegralencodes an integer as a type belonging

to classReflectNumwe can then calleflectNunon a dummy value

(just L) of that type to recover the encoded integer. Both functions

are defined in the moduMisc.Preposen our library®

“We could also introduce a data type
data ExistsT= Va. Exists(T a)
which is used in essentially the same way:

convert:: ExistsT— (Ya.a—r) —r
convert(Exists X) f = f x

However, it turns out that this would just make our code mane v
bose [Kiselyov and Shan(2004), §3.1].

5We have made a slight modification to representation of ereg
used byMisc.Prepose In the original version of Kiselyov and
Shan, a binary representation was used, with the most signifi
digit last. In our representation, we have switched to datimith
the most significant digit first, to make error messages #jigtas-
ier to read:

The two functions we use from the

In an interactive environment, this is unfortunately natqtical.
We discuss methods for using the library interactivelyrlate

2.3 Type of Singular Value Decomposition

The type of the function for singular value decompositio[$
is worth mentioning. The SVD is defined for any matAx and
expressed\ as a product

A=UDV"

whereU andV are orthogonal (unitary), anD is diagonal with
positive entries ordered decreasingly. We would likesadfunc-
tion to return the matriced andV, and a vector which contains
the entries inD. The catch is that the number of entriesDn as
well as the number of columns &f andV, is the minimum of the
number of rows and columns iA. How do we express this in a
type signature? We could defiri&s size to be, say, the number
of rows in A, and pad it with zeros wheA has more rows than
columns. But this is in@cient. Or we could define a type-class
Min a b cwhich expresses the property tlas the minimum ofa
andb. But that would be dficult, and perhaps not ficiently gen-
eral. Instead, we have chosen to use the existential typaitpe
again. Our definition is:

class(Fractional & NumVector v = FracVector v evhere

> let v = useFast $§ $(dim 13) ones
> let u = $(dim 42) v
Couldn’t match ‘X4 (X2 X_)’
against ‘X1 (X3 X))’

5The “L” stands for “linear”. Sincd. is an instance oNum and
the Showinstance hides the constructor, we generally think of it as
just another numeric type:

> domain :: [L (Plus (X5 X.))]

[071,2,3,4]



svd:: (Dom g Domb = v(a b) —
(Vc. Dom c=
(v(@ o, vev(bc)—r)
-r
Here, the type is existentially quantified and cannot escape the

function argument. This is rarely a problem - in most usedef t
SVD (for example, in calculating the pseudo-inverse), wi aad
something involving the diagonal mattix, and then multiply byJ
andV on both sides to get a matrix with the same dimensions as
or A'. In case this isn't enough, variants @fdwith more specific
types can be easily written witnsafeReshapeéescribed below.

2.4 Reshaping

Sometimes it is necessary to convert between dimensioreghwhi
are provably the same, but for which the type checker is @ntbl
derive their equality. For instance, consider the follggvinnction:

type S=L One
toRow:: Doma= V ea—V e(S a)

It converts a vector to a “row vector”, i.e. a matrix with oreew
and whose column dimension is the same as that of the input vec
tor. We could implement this function wittlice, but that might be
inefficient. Instead, we have provided a function for convertiig d
mensionsunsafeReshapdt “casts” a vector from one dimension
type to another. If the two types have dfdient number of ele-
ments, then there is a runtime error - hence the “unsafe”. évew
it can be used to implement “safe” functions suchiai®ow where
itis known by the programmer that the input and output dirfeerss
will always be the same size.

unsafeReshape(Dom g Domb =va—-vb

toRow:: Doma=V ea—V e(S a)
toRow= unsafeReshape

3. BACKEND

In this section we discuss the implementation of vectors.

As with arrays, one can imagine more than one vector imple-
mentation. The semantics could be strict or lazy; the itatierep-
resentation could be boxed or unboxed.

In order to accommodate multiple implementations, almdst a
of the vector operations are members of classes. The main cla
is Vector, but NumVector(vsum x>, margin, ones ...), OrdVector
(vmin vmay, FracVector(inv, mean ...), andFloatVector(logdet
rand) also exist.

In order to allow instances to specify a restricted classlef e
ment types, we use a GHC extension called functional depende
cies [Jones(2000}]:

classVector v € v — e where

For example, th&Vectorinstance is declared as
instanceVector FVector Doublevhere

and theAVectorinstance as
instance Vector (AVector ¢ e where

Unlike the element type, there is no way to put a restriction o
the index types which &ectorinstance will accept, aside from
membership irDomwhich is required by each method:

"“Associated Type Synonyms” provide a possibly more inteiti
way of doing the same thing [Chakravarty et al.(2005)Chadaty,
Keller, and Jones].

classVector v € v — ewhere

vector::Doma= (a—€) > va

We have provided two data types for which instances of these
classes are defined. The firBfector encapsulates afsrray, and
can hold any element type. It is relatively slow for numerazam-
putations (about 200 times slower than GSLHaskell).

3.1 The GSLHaskell Backend

The second vector type we have implemenEdgctor(for “fast”)
is based on Alberto Ruiz's GSLHaskell library, which uBegeignPtrs
to store arrays compactly in C format, and employs the GSE, AT
LAS, and LAPACK for numerical operations. It only suppotte t
Doubleelement type.

3.1.1 Detecting Matrices

The most dificult part about writing a vector backend based on
GSLHaskell was figuring out how to distinguish matrices aad-v
tors in routines that handle both, suchvastor. We would like to
create a5SLMatrixfor matrix objects, and &SLVectoffor vector
objects.?

In our API, anything with a pair index type is a matrix; and ev-
erything else is a vector. But there is no built-in facilitytaskell
for querying the type of a variable. At first glance, one stdug
able to usalataCast2of Ralf Lammel’s generics library [LAmmel
and Jones(2003)]:

dataCast2: Typeable2 = (Ya b. (Data a Data b) =
c (ta b)) —» Maybe(c a)

This facility allows us, once we define some helper functiems
take two diferent courses of action depending on whether a dimen-
sion is a pair or not. However, if it is a pair then we will nebe t
member types of the pair to be instancesDaim but dataCast2
only ensures that they are member®atta. So the SYB library is
unfortunately not useful to us.

Instead, what we have done is to add a special member function
to theDomclass:

class(Bounded aEnum a Ix a, Eq a Show 3 = Dom a
where
domCastPair:ca—»ya—
(vd e (Domd Dom ¢ =
(c(d, &) —y(d e —
ya
domCastPair_ def _ = def
For most domains, the default given above is what we want. But
for pairs it has been redefined as:

domCastPair v_ fn=fnv

Thus, in pseudo-code, we can describe the acticgioofCastPair
as:

domCastPair v def f&
if (vis parameterized by a pair typtien
fnv
else
def

Here is a small example. Sometimes, it is necessary to define
a dummy datatype to get the arguments to match the signatture o

8Although it would be possible to only sto@SLVectos, and con-
vert each to & SLMatrixwhenever an operation calls for a matrix,
this would require calculating the sizes of matrix columul aow
dimensions repeatedly, probably involving callseiectNunmeach
time, which can be in@icient



domcCastPairas we have done below: With the following helper functions

newtype ArrayWrap e a= AW (Array a € gArray:: (GetType elift ) =
instanceVector FVector Doublevhere ((Vw. (Dom w GetType W=
AVector e w— ExpQ — ExpQ
fromArray (ax:: Array a Doubl§ :: FVector a= — ExpQ _
domCastPaifAW ay gArray f =f (1 x — liftVec ¥
(GV $ GSLfromArrayV ay gFast:: (Yw. (Dom w GetType W=
(2 (AW ax) — (GM $ GSLfromArrayM ax)) FVector w— ExpQ — ExpQ — ExpQ

gFast f=f (1 x — liftVec ¥
(fromArrayV andfromArrayM are functions from GSLHaskell for  we can now write for examplé
constructing vectors and matrices, respectively) > let v = $(gArray (listVec([1 . . 4] :: [Doubld])))

3.1.2 Thervectordatatype >V
. <10, 20, 3.0, 40>
TheFVectordatatype uses the GADT extension: Sdotvv
data F\Vector awhere 300

GV :: GSLGSLVector Double- FVector a
GM:: (Doma Domb =
GSLGSLMatrix Double— FVector(a, b)
This way, it is possible to avoid having to calbmCastPairfor
a vector which has already been created. This is used, fongra
in the definition of the indexing operator (!): and identity functions which force the use of a specific impa-

instanceVector FVector Doublevhere tation:

In addition there are macros which create identity functitor
vectors or matrices with integer indices of the specifiedatfigions:

dim:: Int - ExpQ
dim2:: Int — Int - ExpQ

useFast: F\Vector a— FVector a
M) (GV agy k= ... useFast = v
() (GM agm (i, j) = ... useArray:: AVector e a» AVector e a
useArray v= v
In the GM version of (!), we have made use of the fact that the Together, these allow us to write things like:

compiler is able to infer that the second argument is a pair. )
> let m = $(dim2 3 4) $useFast ones

>m

4. INTERACTION <#10, 1.0, 1.0, 1.0;
One of the great features of languages such as Matlab andeéDcta 10, 1.0, 1.0, 1.0;

is their ability to facilitate interactive experiments \vaacommand 10, 1.0, 1.0, 1.0#>

line interface. However, in a typical client of our libramectors >mx (eye+ oneg

only exist within a function called by a routine suchliatVec So, <#5.0, 5.0, 5.0, 5.0;

it is not possible to create them with one command and use them 5.0, 5.0, 5.0, 5.0;

with another?® 5.0, 5.0, 5.0, 5.0 #>

We solve the problem with Template Haskell [Sheard and J8668)].
The resulting APl is not as concise as Matlab, but it is usable

Our primary observation is that if we could make vectors in-
stances of.ift:

Thus, creating a new vector is a bit clumsy, but manipulaiing
is straightforward.

Lastly, we should note a few ongoing issues with the approach
First, there is an open bug in Template Haskell which prevest

classLift t where from lifting vectors above a certain size:
lift :: t - ExpQ

then we could put them in quasi-quotds-[|]. Since the result,
ExpQ would then be independent of the vector dimension, this
would allow us to write something like:

let v =$(listVec[1, 2, 3] (Av—T[|VvI|])
This is essentially what we have done. It is possible to define
a Lift instance which is applicable to all vectors; however, since

there is no single vector datatype, this would lead to proble/ith
overlapping instances. So we settle for a function:

> $(gFast (listVec [1..10000]1))
ghc-6.4.2: panic! (the ‘impossible’ happened,
GHC version 6.4.2):
1inkBCO: >= 64k insns in BCO

This is not a huge burden, since there are ways around it. For
instance, if the dimensions of a vector are known, then onaisa
dim andfromListrather tharlistVec The second problem is that
programs using Template Haskell currently can’t be profilEiis
is a more serious problem, and means that we must recommend
liftvec:: (GetType eLift e, GetType aDom a Vector v & against using any of our template facilities outside of aergctive
GetTypg(v a) interpreter.

= Vva— ExpQ
. P ONote that $gArrayslistVec([1..4]::[ Double]))won't typecheck.
where we have define@etTypdn Misc.Prepose The function ($)has typ& b a (& — b) — a — b, which
classGetType svhere doesn't explicitly mention the universal quantificatiortfirea vari-
getType: s — Type able. Since GHC implements predicative polymorphism, itictvh
type variables cannot be instantiated by polymorphic typssec-
°0One can imagine an interpreter which makes this possibtet bu  ond argument type cannot be unified with the partial apptoatf
would be very tricky and as far as | know, none exists. listVec[Jones and Shields(2005)] [Botlan and Remy(2003)].




Lastly, it would be nice to be able to use Template haskellpe t
signatures, since we are primarily using it to create typkesvever
this doesn’t seem to be possible [Jones(2006)].

5. EXPERIMENT

To better understand both théfieiency and the usability of our
library, we have implemented a medium-sized algorithm froes
chine learning, which is described in more detail hetetp://
www.gatsby.ucl.ac.uk/~zoubin/course®5/lect7var.pdf.

The exact computation which is performed is not importamiefBy,
it is a variational EM (expectation-maximization, ref Dester et
al) algorithm for learning the parameters of the “latentaojnfac-
tors model” (described in the next section). The algorithesw
chosen because it is only partially amenable to expresgiterins
of matrices - a certain amount of looping over indices is ssagy
as well - and because of its familiarity to the author. Thelee@an
skip to section 5.2 at this point if desired.

5.1 Algorithm

The model is described as follows. There &ebinary latent
variabless € {0,1}, parameters = {{g;, m},, o}, where eacly
is a real-valued vector with dimensi@ and an observation vector
y of dimensionD distributed as:

K K
pex) = [ ]psm) =] |7 @-m® )
i=1 i-1
K
PYISt, ..., Sk o, 0%) = N(Z sp;, o21) @)
i=1

We are givenN samples ofy, and must estimate the parame-
ters and the posterior over eagh The variational approximation
we choose ignores dependencies between the variabiasthe
posterior, it estimatep(sy) as[]; p(sly). In our code, we define
Ai = p(sly). The most time consuming part is the E-step, the cal-
culation ofa, which is done by iterating

fori=1..K
Ai = sigm(log™ + (Y = i i) By — 52 TH)
end

where sigmx) = 1/(1+e7*) is the logistic (sigmoid) function. This
is done in the functiomeanFieldStep

The M-step updates the parameters usinglthector from the E-
step; itis a straightforward maximume-likelihood calcidatwhich
is easily expressed in terms of matrix operations.

5.2 Implementation

The Haskell implementation is shown in appendix A, and the
Octave implementation in appendix B.

There are many advantages to using Haskell in this kind of ap-
plication, which we don’t go into in detail. For instancepper
closures are apparently not available in Octave or Matlat, a-
though we don’t need to use them here, they are often verylusef
Easy concurrency is another benefit of using Haskell.

In the following sections we describe only theoblemswe en-
countered in implementing the Haskell version of the athani
stemming from our use of the Haskell language and the compile
GHC.

5.3 Purity Problems

The first dificulty is that the iterative update above needs to be
in exactly that form for convergence. As functional prograens,
we'd like to update all oft at once, with each new; depending

only on the old value oft. However, in this algorithm each;
needs to be updated independently, using the updated nersfo
previous eIementSlj}'j;%,, otherwise the dynamics of the fix-point

iteration are unstabl¥. To facilitate this, we added a member to
the Vectorclass,vectorUpdate

classVector v g v — e where

vectorUpdate: (Dom g = va— [a] —
(va—ma—e—-va

This takes a vector, a list of indices to modify, and a funttend
returns the “updated” vector obtained by applying the fiomcto
each index and to the partially updated vector. For the GSkela
based~Vector, this has an @cient implementation which does all
of the modifications in-place.

The function was dficient for the example program, but it is not
possible to use it with more than one vector at once, so itssipte
that a generalization might be needed at some point. (Onlel cou
imagine a “mutable vector” class, wifreezeandthaw operations
in analogy to the array modules in the standard libraries)

5.4 Laziness Problems

Since the program is iterative, we need to be sure that all the
computations of one iteration are performed before ergetfie
next iteration. Typically, this is done with treeqbuilt-in; how-
everseqonly forces the evaluation of a single thunk, and therefore
isn’t suficient for data with more than one level of structure, and
won't work automatically for alMectorinstances.

Another possibility is to have all our data-types implemant
class such aPeepSeqref); however, this would require many
additional class membership annotations in polymorphig@ams
wishing to make even limited use the facility.

What we have done instead is add a memizemto the Vector
class, so that all users of théctor API have a way to force the
evaluation of a vector. This leaves open the possibility oferor-
ganized approaches suchsepSegbut doesn’'t commit to them.

With this, our program need only define a function to force the
whole state between iterations:

data State vd k= §
sMu:: v (d, k),
sSigma2: R,
sPie:: vk
}
seqState s vseq(sMu 3. vseq(sPie 9.
seq(sSigma2 s

Dealing with such considerations is a task which is a bit tire
some and is not required in strict languages, and which israbs
from the Octave version of our program. On the bright sideh wi
experimental features such as Rob Ennals’ “Optimistic Eathbn”
[Ennals and Jones(2003)] it would seem to be unnecessawy- Ho
ever, methods such as his for prospective thunk evaluatiemgo
have only enjoyed marginal popularity, because they areptem
to implement and maintain, and because they can cause santifi
slow-downs in programs with many small thunks. In vectosdah
numerical computations, though, most of the memory and time
tends to be spent on a few large thunks. We find it unfortunate
that there is currently no working optimistic evaluatiortgbefor
GHC.

5.5 Casting

110ther important algorithms, such as the Gauss-Seidel migtise
similar iterative updates.



Another part of the/ectorinterface which was only added after
experience with the example program were the following mesh

type One= Plus (X1 X))
type S=L One
classVector v € v — e where

toRow:: Doma=va—- V(S a)
toCol::Doma=va—-v(a S
toS::e—v(S 9

fromRow:: Doma= v (S a) »va
fromCol::Doma=v(a, S - va
fromS:v (S § —e

byRow:.: (Dom a Domb = (a— vhb) — v(a b)
byCol:: (Dom g Domb = (b »>va) - v(a b)

The first six express simple dimensional equivalences -ingw
a vector as a row or column vector, etc. The last two make i eas
ier to construct a matrix from row or column vectors. Coliesty,
they are used quite a lot in the example program. Perhapsremba
rassingly, none of the functions are necessary in Octav@e son-
versions are done automatically, others are expressest cdédanly
with the M-code syntax.

Another class of conversions is between numeric tyfremlintegral
is used twice, to convert integer dimension sizeBoaibles; again,
these are not typically necessary in other numerical lagegsia

It would be nice if there were a subtyping facility, wheretaj-v
ues could be automatically promoted to members of parewsstyp
to make at least some of these conversions unnecessarymi so
cases, such automatic conversions might be undesirabiudec
they could increase the number of bugs by weakening the ggpe s
tem. However, the conversions cited above are betweensepre
tations which are either strictly or semantically equivéleso | see
no danger in performing them automatically. Yet | imaginetsa
feature would complicate the type checker considerably.

5.6 Type Checking Difficulties

While the design of our library has made it possible for thgety
checker to guarantee that programs written with it will natd
conformability errors, getting a buggy program to typeathia the
first place is much more flicult than we had initially imagined.

As an example, we have left a line commented out in the func-
tion mstepin appendix A. When this line is swapped for the one
above it, so thak appears in the place of , then GHC gives the
following error:

LearnBinFactors.hs:132:9:
Couldn’t match the rigid variable
against ‘L s’
‘d’ is bound by the type signature for
‘doLearn’
Expected type: State FVector d (L s)
Inferred type: State FVector d d

ldl

The line of the error message is in the middle of the last fonct
doLearn which is quite a bit removed from the actual bug. What
happened is that the bug forced the unification of two typé var
ables,d andk, all over the program. The error message refers to
the line which indicates that they should b&elient, not the place
where they were erroneously unified.

One could blame the fact thatstephas not been given a type
signature. With a type signature forstep we would be able to
indicate that the type variablesandk are separately universally
quantifiedin that function and that might help us better track down
the bug.

Here is a type signature fonstep

mstep: (Dom n Dom d Dom k Vector v R
Num(v (n, K)), Num(v (d, K)), Num(v (n, d)),
FracVector v R =
Params vnd- v (n, k) - v (k, k) - State vd k

It's quite long! Apparently, polymorphism has a high coste W
can make a version whewehas been specialized E/ector.
mstep: (Dom n Dom d Dom K =
Params FVector n é&» FVector(n, k) —
FVector(k, k) — State FVector d k

However, this is not ideal, because we would like to let outeco
be typed as generally as possible.

If the language allowed us to omit class membership comsg;ai
it would be very helpful, since such constraints actuallyehaoth-
ing to do with what we're trying to communicate to the typecies,
namely thatd andk are diferent. That would make the first type
sighature much shorter:

mstep: ... = Paramsvn d- v(n, k) - v(k, k) —
State v d k
In any case, when we give a signaturentstep the error be-
comes:

LearnBinFactors.hs:36:0:
Quantified type variable ‘k’ is unified with
another quantified type variable ‘d’
When trying to generalise the type inferred
for ‘mstep’

This is referring to the first line ahstep notdolters It's an im-
provement, but still not very helpful. There are a lot of giEms
inside the functionomstep and with such a vague error message, the
programmer has no recourse but to check each of them manually

Furthermore, one might wonder wimystepneeds a single type
signature in the first place. We've already made type aniooisit
on the parameters, which usefdrent variablesl andk:

mstep (p::Params v n d) (es::v(n,k))
(ess::v(k,k)) = (s::State v d k)

If we had intended for the places occupied dwgndk to always
represent the same type, then why would we have pigrént vari-
able names in them? One might imagine that the compiler dhoul
be able to notice this.

But we can go even further. If the compiler knew that the vari-
ables were meant to beff#irent atdolters even without thenstep
type signature, then it should have been able to give us ait@mmp
time error at least as useful as the run-time error which@agaves
us, when we pass objects offdirent dimensions tbearnBinFactors

Let's try inserting the same bug into the Octave version ef th
program, in other words changing

mu = (ESS \ (ES’*Y))’;
to
mu = (ESS \ (ES’.*Y))’;
This yields, after 48 seconds, the following error message:
error: product: nonconformant arguments
(opl is 8x400, op2 is 400x16)

error: evaluating binary operator
near line 22, column 17

[

Here, Octave gave the exact position of the error, and wétdidn
even have to add any type signatures. It's true that the erasr
caught at runtime, not compile-time - and it took 48 secoruts f
the error to show up. Yet, it took us much longer to track dokae t
error in the Haskell version; and in the case of the Octavsioer
we spent those 48 seconds reading a book.



Thus, in our opinion, indticiently helpful compiler errors are
currently the greatest impediment to using the library. cgdrably,
by following the data flow of the program, GHC could produce an
error message which is just as informative as Octave’'s enes-
sage:

LearnBinFactors.hs:132:9:
Couldn’t match the rigid variable ‘d’
against ‘L s’

Probable quantified type mismatch
arising from use of ’*’ at
LearnBinFactors.hs:42:35

But that work remains to be done.
It should be noted that we have only used GHC in our tests,
and that there are compilers which put much mdfereinto giv-

anFVectormatrix to be converted to a vector of row vectors, with-
out having to switch to a vector implementation which caneatc
other vectors as elements.

We have been thinking about how to expose more information to
the type system. To complicate our terminology, one polyilis
to make dimensionality in the physics sense part of each riume
cal type - something like length, time, etc. For instanceyatld
become illegal to take the logarithm of any value which is ‘it
mensionless” in the physics sense. We know of one Haskediriib
(ref Aaron Denney) which accomplishes this. This would &ppe
to solve the problem of distinguishing a matrix from its irse
(since ifx is a scalar thenx®)™* = x"*A-1) however, it is unclear
how physics dimensions could distinguish a (square) métoix
its transpose (which, by the way, is sometimes equal to trezse).
Itis an interesting area that we have not looked into.

One would like to make it possible to do fast versions of oper-

ing good error messages. However, we depend on many advancedtions such aslice and margin Most of the function arguments

Haskell features - functional dependencies in type clasaabTs,
template haskell - many of which are at present only avaglabl
GHC.

This isn’t a reason to give up hope. We believe that libragiesh
as ours, based on strongly typed functional programmirgLiages
such as Haskell, are the future of scientific computing. jitd a
matter of getting to the point where they are better than theis
quo.

Furthermore, we should note that the benefit of using Haskell
is expected to be greater for larger programs, where functioe
called from multiple contexts, and run-times are longer same
cases Haskell may already be preferable, in spite of thessae
have mentioned.

6. PERFORMANCE

We found that the Haskell implementation was significaratér
than the Octave implementation. We made some performance im
provements to GSLHaskell, most importantly linking to ATEA
and LAPACK and switching the implementation of matrix inver
sion from GSL to LAPACK (for a factor of 10 speed-up). Octave
uses the same or similar libraries, so this is reasonabletodke
care to ensure that no operations were hard-coded in onewerfs
the program but not the other.

Our version of ATLAS is the standard Debian package
atlas3-base, version 3.6.0-20.2, and has not been specially op-
timized for our system. LAPACK is packagkeapack3 version
3.0.20000531a-6, and GSL is packddégs10 version 1.8-1. We
ran our tests on a 1250 MHz AMD Athlon.

We used GHC version 6.4.2, compiling witi®3, and Octave
2.95.

The Haskell version of the program takes 545 seconds, wigle t
octave version takes 890 seconds, over 60% longer.

The full library and example programs are available at:

http://ofb.net/~frederik/stla/

7. FUTURE WORK

One can imagine a variety of improvements which could be made
to our library.

One feature which would be useful is to have a single vector
type which can hold arbitrary elements, yet which is fi€ient as
FVector for certain element types such Beuble We could re-
quire the element type to bg/peable and useData Typeablecast
to switch to the optimized implementation when possibléngis
GADTSs again as in section 3.1. This could be done as an egtensi
of FVector. It would have the advantage of allowing, for instance,

to those methods will be very simple - such as rearranginglte
ments of a tuple or other term:

trans m= slice(1 (X, y) — (v, X)) m
If we could somehow deconstruct simple functions such gsy) —
(y, X), then we could implemesticevery dficiently using C helpers.
Alternatively, we could require users to specify such fiore man-
ually via a special datatype. However, it is unclear how #stt-
ing syntax could be made as clean as the syntax for creatiluy a ¢
sure. In any case, a solution to this problem would greatijifate
the manipulation of more structured quantities such astsns

8. CONCLUSION

Our library has shown that strongly typed linear algebraési-
ble in Haskell. The implementation is made possible by a num-
ber of relatively advanced language features: GADTSs, tatapl
haskell, functional dependencies, rank-2 polymorphisrhil&\bur
library is currently less usable than Octave or Matlab, @lieady
much more #icient than Octave, and we feel that with certain com-
piler improvements and language features it will becomettebe
programming environment as well.
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APPENDIX
A. EXAMPLE PROGRAM, HASKELL VER-

SION

import Control. Exception
import DebugTrace
import Random

import Vector

defaults= P{pY = L, pNumFactors= 8,
pMaxSteps= 30, plters= 20}

data Params v n d= P{
pY:v(n, d),
pMaxSteps: Int,
plters:: Int,
pNumFactors: Int
}
showParams =
show(pY p pMaxSteps pplters p pNumFactors p

data State vd k= §

sMu:: v (d, k),
sSigma2: R,
sPie:: v k
}
showState s show(sMu s sSigma2 ssPie 3

seqState s vseq(sMu 9. vseq(sPie 3.
seq(sSigma2 s

but = flip assert
myXlogyx X y= X x log (y / (X +. 1.0e— 20))

mstep(p :: Params v n Jl (es:: v (n, K))
(ess:v(k, k)) = (s:: Statevd k
‘but (sigma2> 0.0)
where
s= §sMu= (mu:: v (d, k)), sSigma2= sigma2 sPie= pie}
(y:v(n d) =pYp
(mu:: v (d, K)) = trans (pinv ess< (trans es< y))
- = (mu:: v (d, K)) = trans (pinv essx (trans es< y))
sigma2= (vsumSq y vsum(mux (mu>> esg) —
2 x vsum(esx (y>> mu)) /
(fromintegral$ vien y)
pie = fromRow$ unif >> es

meanFieldStefp :: Params v n gl (s:: State vd k
(lambdag: (v (n, k))) =
(lambda:: v (n, k), f :: R, dist:: R)
where
(mu, sigma2 pie) = (sMu s sSigmaz2 ssPie 9
y=pYp
d = fromIntegral$ cols y
pieExpr= log (pie / (1 - pie))
lambda= byRow$ A (p:: n) —»
lety_p = getRow y pn
vectorUpdate(fromRow$ getRow lambda0)pdomain$
Alambdap’ (i :: k) —
sigm$ (pieExpr! i) + (1 / sigmad x
let mu_i = getCol mu i
mu_Ss= vsumSq mu / 2
lambda p = toRow lambdap’ in
fromS((y_p — lambda p > trans mu+
(lambdap! (0, i)) . (trans mui)) >> mu_i) — mu_ss
f = sum$ foreach$ 1 p —
let Ip = getRow lambda p
yp=getRow y p
f_ = vsum(myXlogyx Ip(toRow pig +
myXlogyx(1 — Ip) (toRow$ 1 — pie))
—d x log sigma2/ 2
—(1/(2xsigmal) x vsumSq
(yp— Ip > (trans my)
—(1/(2xsigmal) x vsum
((Ip = Ip #x 2) x (sumColgmux mu)))
—(d/2)xlog (2 x pi)

inf_
dist = sqrt$ vsumSdlambda- lambdaQ
initState() = do  -- :: 10 (State v d k)= do

(muO:: v (d, K)) « randlO

putStrLn$ “size of muO: "+ (show(rows muQ cols mu()
(sigma20:: R) « randomlO>= (return. (+0.1))

(pie0:: v K) « randlO

return$ S{sMu= muQ sSigma2= sigma20, sPie= pie0}

learnBinFactors(p :: Params v n gl= do
S « initState()
dolters p1s

dolters p n § n > (plters p = return s
dolters(p:: Params v n §i(n:: Int) (s:: State vd k=
seqState $trace (“EM iteration: " + show n $
do
let (mu sigma2 pie) = (sMu s sSigma2 ssPie 9
(lambda0:: v (n, k)) < randlO
let (lambda:: v (n, k), f) = meanField p s lambda0
let es= lambda
let ess= (trans lambda > lambda+
diag (fromRow$ sumCols lambda



sumColgqlambdax lambdg)
let s = mstep p es ess
dolters p(n+1) ¢

meanField(p :: Params v n gi(s:: State vd k
(lambda0:: v (n, k)) =
let {(lambda f, n) =
loopUntil (lambdaQ minBound 0)
(2 (lambda f, n) —
let (lambdd, f’, dist) = meanFieldStep p s lambda
in
(if f” <f then
trace (“F decreased in MeanField step’
show 4 “ from ” + show f+ “to ” + show f)
elseid) $
trace (“f=" + show ) $
trace (“dist=" + show dis} $
((lambdd, f’, n+ 1), n+ 1 < (pMaxSteps p
in trace (“meanField took "+ show n+ “ steps”) $
(lambda f)
loopUntil:: a — (a — (a, Bool)) — a
loopUntil x0 f = let (x, cont) = f x0in
if contthen loopUntil x f elsex
main= do
readMatrixFile “data.txt” doLearn
doLearn:: Yd n. (Dom n Dom d = FVector(n, d) — 10 ()
doLearn y=do
let p = defaultgpY =y}
putStrLn$ “(n,d)=" + show(rows y colsy)
reifylntegral (pbNumFactors p(2 (_ ::k_) — do
(s::State vdL k )) «
learnBinFactors p
putStrLn$ “mu=" + show(sMu 9
putStrLn$ “pi=" + show(sPie §
putStrLn$ “sigma2=" + show(sSigma2 s
)

B. EXAMPLE PROGRAM, OCTAVE VER-
SION

function [mu, sigma2, pie] = MStep(Y,ES,ESS)
# Y is NxD

# ES is NxK

# ESS is KxK

# mu is DxK

# sigma2 is 1x1

# pie is 1xK

[N,D] = size(Y);
if (size(ES,1) !'= N)

error(ES must have the same number of rows as Y’);
endif
K = size(ES,2);
if (!isequal(size(ESS), [K,K]))

error ('ESS must be square and have \

the same number of columns as ES’);

endif
mu = (ESS \ (ES’*Y))’;

sigma2 = (sum(sumsq(Y))+sum(sum(mu.*(mu*ESS)))-
2*sum(sum(ES. *(Y*mu))))/(N*D);

if sigma2 < @
error(’sigma2 negative in MStep’);
endif

pie = mean(ES,1);

endfunction

function [1,F,dist] =
MeanFieldStep(y,mu,sigma2,pie, lambda®)

#y is N x D

#mu is D x K

# pie is 1 x K

# lambda is N x K

sigm = @(x) 1./(l+exp(-x));

xlogax = @(x,a) x.*log(a./(x+realmin));

rows(y);

columns(y);

columns (mu) ;

lambda®;

0;

p=(1:n)

yp = y(p,:);

for i=(1:k)

1(p,i) = sigm(log(pie(i)./(1-pie(i))) + \
(1/sigma2) * \
(yp-1(p, :)*mu’+1(p,1)*mu(:,1i)’) * mu(:,i) - \
sumsq(mu(:,i))/(2*sigma2));

endfor

1p = 1(p,:);

f_ = sum(xlogax(lp,pie) + xlogax(l-lp,1l-pie)) - \
d*log(sigma2)/2 - \
(1/(2*sigma2))*sumsq(y(p,:) - lp*mu’) - \
(1/(2*sigma2))* \

(sum((1p-1p.A2).*sumsq(mu,1))) - \
(d/2)*log(2*pi);
if !isnan(£f_)
F += f_;

endif
endfor
dist = sqrt(sum(sumsq(l-lambda®)))
endfunction
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function [lambda,F] =
MeanField(Y,mu,sigma2,pie,lambda®,maxsteps)

lambda=1ambda®;
F = -realmax;
for step=(1l:maxsteps)
FO = F
[lambda,F,dist] =
MeanFieldStep(Y,mu,sigma2,pie,lambda);
if F < FO®
fprintf(stderr, "F decreased in \
MeanField step %d from %f to \
%f\n", step, FO, F);
endif
endfor

fprintf(stderr, "MeanField took %d steps\n",maxsteps);
endfunction

function [mu, sigma2, pie] =
LearnBinFactors(Y,K,iterations,maxsteps)

# Y: data

# K: number of features
N = rows(Y);

D = columns(Y);

# mu is D x K
# pie is 1 x K
# lambda is N x K



pie = rand(1,K);

mu = rand(D,K);

sigma2 = rand(1,1)+0.1;
lambda® = rand(N,K);

for iter=(l:iterations)

lambda® = rand(N,K);

fprintf(stderr,"Doing E step\n");

[lambda, F] = MeanField(Y, mu, sigma2,

pie, lambda®, maxsteps);

# F is lower bound on likelihood

F

ES = lambda;

ESS = lambda’*lambda + \
diag(sum(lambda, 1) -sumsq(lambda,1));

fprintf(stderr,"Doing M step\n");
[mu, sigma2, pie] = MStep(Y,ES,ESS);
endfor

endfunction



