MECH 328 Batteries

Guest lecture by Ania Mitros, PhD September 2022

Who am I?

© Ania Mitros, PhD, 2022 <u>https://www.linkedin.com/in/aniamitros/</u>

Goal and optimization parameters

• Mech 328 Goal: Electrify diesel power in Metro Vancouver (e.g., Sea Bus, delivery vehicles, heavy machinery, etc.). Identify a potential application and demonstrate feasibility through appropriate sizing, costing, and other analysis.

Optimization parameters:

- Energy density (with a nod to power density)
- Safety
- Lifetime: Chemistry, temperature, voltage
- Charge rate
- Temperature range

Inspired by: <u>https://www.smartpropel.com/nickel-cobolt-manganese-lithium-battery-vs-lithium-iron-phosphate-battery-this-is-the-most-comprehensive-interpretation</u>

Goal and optimization parameters

• **Goal:** Electrifying diesel power in Metro Vancouver (e.g., Sea Bus, delivery vehicles, heavy machinery, etc.). Identify a potential application and demonstrate feasibility through appropriate sizing, costing, and other analysis

• Optimization parameters:

- Energy density (with a nod to power density)
- Safety
- Lifetime: Chemistry, temperature, voltage
- Charge rate
- Temperature range

From: https://www.smartpropel.com/nickel-cobolt-manganese-lithium-battery-vs-lithium-iron-phosphate-battery-this-is-the-most-comprehensive-interpretation

Energy density vs power density

Energy density: How much energy is available per a given volume or mass of cells (kWh per liter, or kWh per kg)

Power density: How much power is available per a given volume or mass of cells (kW per liter, or kW per kg)

Example: Tesla Model 3 Long Range battery

- 75kWh capacity, 480 kg → 156 Wh/kg energy density
- Peak power of 258 kW, 480 kg → 538 W/kg power density

Vehicle specs from: <u>https://en.wikipedia.org/wiki/Tesla_Model_3</u>

When to optimize power vs energy density?

Energy density	Power density
In applications where current draw is fairly constant and we want the energy to last for a long time	In applications where the current draw is expected to have large peaks
Long-range truck	Race car
Family car	RC helicopter

Energy density differs by chemistry

From: <u>https://www.epectec.com/batteries/cell-comparison.html</u> and <u>https://www.smartpropel.com/nickel-cobolt-manganese-lithium-battery-vs-lithium-</u> <u>iron-phosphate-battery-this-is-the-most-comprehensive-interpretation</u>

Lithium-ion batteries include: lithium titanate, lithium cobalt, lithium manganese oxide, **nickel cobalt manganese (NCM)** and **lithium iron phosphate (LFP)**.

For energy density, the NCM battery can reach 240Wh / kg, nearly 1.7 times of LFP battery density 140Wh / kg $\,$

what do YOU want to use for your vehicle?

(To optimize energy density)

Goal and optimization parameters

• **Goal:** Electrifying diesel power in Metro Vancouver (e.g., Sea Bus, delivery vehicles, heavy machinery, etc.). Identify a potential application and demonstrate feasibility through appropriate sizing, costing, and other analysis

Optimization parameters:

- Energy density (with a nod to power density)
- Safety
- Lifetime : Chemistry, temperature, voltage
- Charge rate
- Temperature range

From: <u>https://www.smartpropel.com/nickel-cobolt-manganese-lithium-battery-vs-lithium-iron-phosphate-battery-this-is-the-most-comprehensive-interpretation</u>

Safety through cell chemistry

			Nickel	Li-ion					
Specifications	Lead Acid	Nickel Cadium (NiCd)	Metal Hydride (NiMH)	Cobalt Oxide (LCO)	Manganese Oxide (LMO)	Nickel Manganese Cobalt Oxide (NMC)	Nickel Cobalt Aluminum (NCA)	Iron Phosphate (LFP)	
Safety	Thermally	Thermally s	stable, fuse		Can go into	thermal runawa	ау	Vary	
Requirements	stable	protection	i common						
Toxicity	Very High	Very High	Low			Low			
	Modified from table at: <u>https://www.epectec.com/batteries/cell-comparison.ntml</u>							↓ e are	
what do	ant to		Causes	of thermal ru	inaway:	therr	nally stable		
use for y	jour vel	nicle?	 Over-neating Over-current → Over-heating 						
(To avoid th and optimi	iermal runa ze energy a	away density)		• 1 • 6 • Over	nternal short external shor -charge → D	t (cell anode to t (battery pacl amage → Loc	o catnode) k terminals) cal short → (Over-heatin	

- external short (battery pack terminals)
- Over-charge \rightarrow Damage \rightarrow Local short \rightarrow Over-heating

Battery Management Systems

But...

what about internal shorts?

(Thank goodness for mechanical engineers)

Battery construction with pouch or prismatic cells

Chevy Bolt

Hyundai Kona

Cell construction

https://components101.com/articles/battery-seperators-types-and-importance

Order of magnitude: Area of separator in one car

- "In a 2170 Tesla cell, there's about one meter's length of jellyroll..."
 - <u>https://www.popularmechanics.com/science/energy/a34114885/elon-musk-tesla-battery-day-recap</u>
- A 2170 cell is 21 mm by 70 mm
- → Separator area in one cell is 2 × 1m × 70mm = 0.14m²
- Long Range Model 3 has 4416 cells
 - <u>https://www.evspeedy.com/how-many-batteries-teslas/</u>
- \rightarrow Separator area in one car is 0.14m² × 4416 = 618 m²
- Olympic-size swimming pool are $50m \times 25m = 1250 m^2$
 - <u>google.com</u>
- → Separator area in one Long Range Model 3 is similar to half an Olympic-size swimming pool
- Tesla sold 936,222 cars in 2021
 - https://en.wikipedia.org/wiki/Tesla, Inc.

Should we expect the area of 500,000 swimming pools to be perfect?

Chevy Bolt recall

Bolt EV and Bolt EUV RECALL INFORMATION

LATEST NEWS

The simultaneous presence of two rare manufacturing defects (a torn anode tab and folded separator) in the same battery cell are the root cause of battery fires in certain Chevrolet Bolt EVs.

https://www.chevrolet.com/electric/bolt-recall

https://www.chevrolet.com/electric/bolt-recall

Chevy's solution to the Chevy Bolt recall

Chevy: Ask LG to manufacture more perfect cells

\rightarrow C \triangle \triangleq chevrolet.com/electric/bolt-recall	Ø	₾	$\overrightarrow{\mathbf{x}}$	•••	k	*	
FAQS							
What is the defect in recalled batteries?						÷	
When do you expect to have all the recalled vehicles repaired?						Θ	
We are working aggressively with LG to adjust production to have replacement modules available as soon as possible.	J						

Tesla: Safety through mechanical construction

Patent: US20100075221A1

Assignee: Tesla Inc

A means for inhibiting the propagation of thermal runaway within a plurality of batteries is provided, wherein the means is comprised of at least one layer of intumescent material interposed between the interior surface of the casing of a battery and the corresponding electrode assembly.

https://www.greencarreports.com/news/1128060_tesla-s-battery-approach-vs-others-teardown-video-breaks-it-down

Individually fused cells embedded in a fireretardant medium

https://lionsmart.com/en/lion-light-battery-en/

Summary of Design for Safety

Safety through excellence in cell manufacturing

- Chevy Bolt
- Volkswagen E-Golf
- BMW i3
- Hyundai Kona, IONIQ
- Nissan Leaf
- Jaguar iPace
- Audi e-tron Quattro
- Porsche Taycan
- ...and many large OEMs

https://pushevs.com/2020/04/04/comparisonof-different-ev-batteries-in-2020/

LI-ION									
Nickel Manganese Cobalt Oxide (NMC)	Nie Co (N	ckel balt CA)	Iron Pho (LF	osphate P)					
Can go into thermal	runa	way	Can thermall	be ystable					
	17/-			Safety • Tes					

Safety through mechanical construction

Limit propagation of exothermic events

- Tesla
- LionSmart

what do YOU want to use for your vehicle?

(To avoid thermal runaway... ...and optimize energy density)

Safety through thermally-stable chemistry

- Tesla: Switched to LFP for standard range vehicles (<u>Oct 2021</u>)
- Ford: Switching to LFP for 2023 Mach-E and 2024 F-150 Lightning (July 2022)
- Hyundai: Started developing for LFP in 2021 (July 2021)
- MG ZS EV: Switched to LFP (Sept 2022)
- ...

Goal and optimization parameters

• **Goal:** Electrifying diesel power in Metro Vancouver (e.g., Sea Bus, delivery vehicles, heavy machinery, etc.). Identify a potential application and demonstrate feasibility through appropriate sizing, costing, and other analysis

Optimization parameters:

- Energy density (with a nod to power density)
- Safety
- Lifetime: Chemistry, temperature, voltage
- Charge rate
- Temperature range

From: https://www.smartpropel.com/nickel-cobolt-manganese-lithium-battery-vs-lithium-iron-phosphate-battery-this-is-the-most-comprehensive-interpretation

Lifetime: A disclaimer

Best data is proprietary! ⊗

Lifetime: Rules of thumb

Differs between chemistries

• LFP vs NCM: LFP has higher cycle life than NCM/NCA.

Affected by usage profile:

- Hot temperatures cause faster degradation
- Voltage: Storage near 100% causes faster degradation. (More for NCM than LFP)
- High currents cause faster degradation

Lifetime: Cycle life differs across chemistries

Cycle life: How many times a battery can be recharged.

		Nickol	Nickel		Li-ion	
Specifications	Lead Acid	Lead Acid Cadium (NiCd)		Cobalt Oxide (LMO)	Manganese Oxide (LMO)	Iron Phosphate (LFP)
Life Cycle (80% discharge)	200-300	1000	300-500	500-1,000	500-1,000	1,000-2,000
Modified from table at: <u>https://www.ep</u>	bectec.com/batteri	es/cell-comparisor	<u>n.html</u>		Li-ion	
Specifications				Nickel Manganese Cobalt (NCM)	Nickel Cobalt (NCA)	Iron Phosphate (LFP)
Life Cycle (to 80% capacity)				1,000	1,000	2,500

From: <u>https://zecar.com/post/what-are-lfp-nmc-nca-batteries-in-electric-cars</u>

Lifetime: Cycle life differs across chemistries

Fig. 6 in https://ieeexplore.ieee.org/document/7488267 [Xu 2018]

Fig. 2 in DOI: 10.1149/2.0411609jes [Keil 2016]

Fig. 2 in DOI: 10.1149/2.0411609jes [Keil 2016]

Capacity loss: Case study (Nissan Leaf in Arizona)

2011-2012 Nissan Leaf

- Reports of 1 of 12 bars (8.3%) capacity loss in 1st year
- Nissan initially claimed a dashboard instrumentation problem
- Leaf owners performed a controlled range test in Phoenix, confirming range loss.

What did Nissan's mechanical engineers do differently than other car makers? Leaf: Air-cooled battery

https://www.technologyreview.com/2012/09/19/85161/are-air-cooled-batteries-hurting-nissan-leaf-range/

Fig. 2 in DOI: 10.1149/2.0411609jes [Keil 2016]

Lifetime: Summary

Engineering options include:

- Cell selection
- Avoid charging to 100%
- Implement a good cooling system

Side note: Omission of impedance (or resistance).

- Cell impedance also increases with aging
- High cell impedance reduces available peak power

Goal and optimization parameters

• **Goal:** Electrifying diesel power in Metro Vancouver (e.g., Sea Bus, delivery vehicles, heavy machinery, etc.). Identify a potential application and demonstrate feasibility through appropriate sizing, costing, and other analysis

Optimization parameters:

- Energy density (with a nod to power density)
- Safety
- Lifetime: Chemistry, temperature, voltage
- Charge rate
- Temperature range

From: <u>https://www.smartpropel.com/nickel-cobolt-manganese-lithium-battery-vs-lithium-iron-phosphate-battery-this-is-the-most-comprehensive-interpretation</u>

"C" or "C rate"

C: a measure of a cell's current relative to its total capacity.

• A 1C current will discharge the battery in 1 hour.

• For a battery with a capacity of 100 Ah (Amp hours), 1C means a discharge current of 100 A.

Charge rate: Key concepts

- Charge profile: CC/CV
- Temperature dependence
- Fast charging

CC-CV charge profile

Constant-current constant-voltage charging prevents overcharge

Temperature dependence of charge rate

2.2.7 其他充电条件(模式) C-Rate Other charge Condition (C-Rate)

				-										-
电力	芯温度/℃	0	2	5	7	10	12	15	20	25	45	48	55	60
Ce	11													
tem	perature													
SOC	0%~<80%	0	0.116	0.116	0.372	0.372	0.5	0.5	1.0	1.0	1.0	0.8	0.5	0.2 79
SOC	>80%	0	0.116	0.116	0.372	0.372	0.5	0.5	0.75	0.8	0.8	0.8	0.5	0.2 79

© Ania Mitros, PhD, 2022 https://batteryfinds.com/wp-content/uploads/2022/06/CATL-302Ah-LiFePO4LFP-Battery-Cell-Product-Specification.pdf

Temperature dependence of discharge rate

参数 Parameter	产品规格 Specification
工作温度(充电) Operating temperature (charging)	0 ~65℃
工作温度(放电) Operating temperature (discharge)	-354-65℃
CATL	LFP

https://batteryfinds.com/wp-content/uploads/2022/06/CATL-302Ah-LiFePO4LFP-Battery-Cell-Product-Specification.pdf

https://www.evlithium.com/nmc-battery/calb-50ah-lithium-nmc-battery.html

https://www.lithiumstoragebattery.com/product-lfp71173204e-280ah-lithium-ion-battery.html

https://www.evlithium.com/nmc-battery/samsung-sdi94-94ah-nmc-battery.html

Fast charging and capacity loss

https://www.sciencedirect.com/science/article/pii/S0378775319302265 [Mussa 2019]

Cycle life decreases with increasing current.

• Engineering trade-off!

Details:

- NMC cells targeted at PHEVs (Plug-In Hybrid Electric Vehicles)
- Cycling between 20% and 80% SoC.
- 1C discharge.
- No rest between charge/discharge.

Fast charging and capacity loss

Capacity decreases with increasing current.

• Engineering trade-off!

Details:

- Cycling between 20% and 80% SoC.
- 1C discharge.
- No rest between charge/discharge.

Introduction to this paper has a really nice, readable discussion of electric cars vs buses.

Side note: Similar concern for discharge current.

https://www.sciencedirect.com/science/article/pii/S0378775319302265 [Mussa 2019]

Higher C-rate cells

Category			Power Cell		Energy Cell	
	Model		P41	E65D	E61V	E78
Image			1	1	1	1
	Capacity (Min, 25℃, 0.3C)	Ah	40.8	64.5	60.0	78.0
	Energy Density	Wh/L	486	444	532	602
	(Min)	Wh/kg	226	234	253	265
	Max Charge Current (A)	Pulse Charge * (10sec, SoC 50%, 25°C, BOL)	380	300	200	184
Performance	Max Discharge	Continuous Discharge (25°C, BOL)	204	130	180	234
	Current (A)	Pulse Discharge * (10sec, SoC 50%, 25°C, BOL)	380	400	400	496 🗲
			(204 A)/(40.8 Ah)	(130 A)/(64.5 Ah)	(180 A)/(60 Ah)	(234 A)/(78 Ah)
			= 5C	= 2C	= 3C	= 3C

From p.4 in <u>https://www.lgensol.com/assets/file/LGES_Automotive_CommercialEV_Leaflet_2022.pdf</u> © Ania Mitros, PhD, 2022

Fast charging

- Easier with cells optimized for power
- May reduce lifetime
- Thermally limited
- Requires infrastructure.
 - Typical home outlet provides 120V × 15 A = 1.8kW
 - For 70kWh battery: 70kWh/1.8kW = 39 hours
 - Dryer outlet: 240V × 30 A = 7.2kW
 - For 70kWh battery: 70kWh/1.8kW = 9.7 hours
 - Fast charge: You do the math.
- Rule of thumb to avoid charging >1C: Not enough to fastcharge, and many Li-Ion chemistries can withstand more.

Cooling mitigated aging impact of high currents. <u>https://doi.org/10.1016/j.est.2020.101310</u> [Barcellona 2020] © Ania Mitros, PhD, 2022

Charge rate: Summary

- CC-CV charge profile prevents over-charge
- **Temperature** affects charge rate. May need:
 - Heating system, cooling system, power reduction at temperature extremes
- Fast charging requires care
- **Optimizing:** Different applications benefit from different cells and different management.

Goal and optimization parameters

• **Goal:** Electrifying diesel power in Metro Vancouver (e.g., Sea Bus, delivery vehicles, heavy machinery, etc.). Identify a potential application and demonstrate feasibility through appropriate sizing, costing, and other analysis

Optimization parameters:

- Energy density (with a nod to power density)
- Safety
- Lifetime: Chemistry, temperature, voltage
- Charge rate
- Temperature range

From: <u>https://www.smartpropel.com/nickel-cobolt-manganese-lithium-battery-vs-lithium-iron-phosphate-battery-this-is-the-most-comprehensive-interpretation</u>

Temperature range

- Capacity vs temperature
- Review previous learnings:
 - Lifetime vs temperature
 - Charge current vs temperature

		Nickel	Nickel	Li-ion				
Specifications	Lead Acid	Cadium (NiCd)	Metal Hydride (NiMH)	Cobalt Oxide (LMO)	Manganese Oxide (LMO)	Iron Phosphate (LFP)		
Charge Temperature	-20 to 50°C	0 to 4	l5°C		0 to 45°C			
	-4 to 122°F	32 to 1	13°F	32 to 113°F				
Discharge Temperature	-20 to 50°C	-20 to	-20 to 65°C -20 to 60°C					
	-4 to 122°F	-4 to 1	49°F		-4 to 140°F			

Excerpted form a more detailed table at: https://www.epectec.com/batteries/cell-comparison.html

Temperature dependence of capacity

Side note: What's sketchy about these curves?

Click here to expended view

Super Customized KC Nmc Accu LED Lights Flashlight Li ion Battery 18650 Cell Pack 3.6V 3.7V Rechargeable 18650 Lithium Battery Popular 6 buyers

FOB Reference Price: Get Latest Price

\$0.20 - \$0.99/ piece | 1 piece/pieces(MOQ)

https://www.alibaba.com/product-detail/Customized-KC-Nmc-Accu-LED-Lights_1600125028451.html © Ania Mitros, PhD, 2022

Side note: What's sketchy about these curves?

$4s \rightarrow 4$ cells in series

https://www.alibaba.com/product-detail/Customized-KC-Nmc-Accu-LED-Lights_1600125028451.html © Ania Mitros, PhD, 2022

Temperature dependence of capacity

Samsung NMC cell

7.6 Temperature dependence of discharge capacity Capacity comparison at each temperature, measured with discharge constant current 10A and 2.5V cut-off after the standard charge is as follows.

Discharge temperature								
-20°C -10°C 0°C 25°C 60°C								
60%	75%	80%	100%	100%				

Samsung INR18650-20R

https://docs.rs-online.com/84c8/0900766b812fdd47.pdf

LG LFP cell

4.3.4	Cells shall be charged	per 4.1.1 at 23°C ± 2°C	
Temperature	and discharged per	4.1.2 at the following	
Dependency of	temperatures.		
Capacity	Charge	Discharge	Capacity
		-10℃	60% (of C _{nom} in 2.1)
	05 °0	℃ 0	80% (of C _{nom} in 2.1)
	250	25 ℃	100% (of C _{nom} in 2.1)
		60 ℃	95% (of C _{nom} in 2.1)

LG 18650 HG2 3000mAh

© Ania Mitros, PhD, 2022

SK Innovation NMC cell

- 3.3.1. Charge Capacity
- Test Conditions
 - -. Discharge (CC): 1/3C, 2.7 V cut-off @ 25 $^{\rm o}{\rm C}$
 - -. Charge (CC): 1/3C, 4.2 V cut-off @ each temperature

Temperature	45 °C	35 °C	25 ℃	10 °C	0 °C
Charge Capacity, (%)	≥ 100%	≥ 100%	100%	≥ 85%	≥ 80%

SK Innovation S004A

Temperature review: capacity loss Calendar aging

At 25°C, cells degraded to ~96% of initial capacity

At 40°C, cells degraded to ~91% of initial capacity

At 50°C, cells degraded to ~87% of initial capacity

Aging accelerates with temperature.

Fig. 2 in DOI: 10.1149/2.0411609jes [Keil 2016]

Temperature review: Charge rate

Temperature summary

20°C to 45°C is the operating sweet spot for Li-Ion

- Aging
- Capacity
- Current (and thus power)

Temperature management is important

- temperature sensing
- heating system
- cooling system
- reduced power operation

Goal and optimization parameters

- **Goal:** Electrifying diesel power in Metro Vancouver (e.g., Sea Bus, delivery vehicles, heavy machinery, etc.). Identify a potential application and demonstrate feasibility through appropriate sizing costing, and other analysis
- Optimization parameters:
 - Energy density (with a nod to power density)
 - Safety
 - Lifetime: Chemistry, temperature, voltage
 - Charge rate
 - Temperature range

Inspired by: <u>https://www.smartpropel.com/nickel-cobolt-manganese-lithium-battery-vs-lithium-iron-phosphate-battery-this-is-the-most-comprehensive-interpretation</u>

Cost: Overview

© Ania Mitros, PhD, 2022 From: <u>https://www.citifirst.com.hk/home/upload/citi_research/AZ7ON.pdf</u> (Feb 2021)

Battery Cost is Falling

Drivers behind cost decreases

- Energy density improvements
- Economies of scale

Figure 63. Global Cell Supply/Demand Balance (GWh)

Source: Citi Research

Source: Citi Research, BNEF

Blinds spots and biases

Figure 15. Newer Model Launches Improve Significantly on Range

Source: Citi Research, Clean Technical, Autocar, Greencar reports, Inside EVs, electrek

Plot: https://www.citifirst.com.hk/home/upload/citi_research/AZ7ON.pdf

Tesla info: https://en.wikipedia.org/wiki/Tesla_Model_S and https://en.wikipedia.org/wiki/Tesla_Model_3

Cost: LFP vs NMC

These are estimates only, actual figures will vary depending on make and model of electric vehicle.

From: https://zecar.com/post/what-are-lfp-nmc-nca-batteries-in-electric-cars

	LFP	NMC		
2021	\$178.80	\$211.44	+	 Higher than other sources
2030	\$117.00	\$138.36	+	 Narrow price gap
From: <u>https://www</u>		p-and-nmc	- SI	ick system cost estimator

Cost: YOUR cost.

	NCM	LFP		
Energy density	Better			
Safety		Better		
Lifetime		Better		
Charge rate (related to power density)		Often better		
Temperature range	Both need activ	re management		
Cost	Less expensive on Alibaba.com	Less expensive per industry estimates		

Cell chemistry options

	Lead Acid	Nickel Cadium (NiCd)	Nickel Metal Hydride (NiMH)	Li-ion			
Specifications				Cobalt Oxide (LMO)	Manganese Oxide (LMO)	Iron Phosphate (LFP)	
Specific Energy Density (Wh/kg)	30-50	45-80	60-120	150-190	100-135	90-120	
Life Cycle (80% discharge)	200-300	1000	300-500	500-1,000	500-1,000	1,000-2,000	
Fast-Charge Time	8-16h	1h typical	2-4h	2-4h	1h or less	1h or less	
Overcharge Tolerance	High	Moderate	Low	Low. Cannot tolerate trickle charge			
Self-Discharge/month (room temp)	5%	20%	30%	<10%			
Peak Load Current Best Result	5C 0.2C	20C 1C	5C 0.5C	>3C <1C	>30C <10C	>30C <10C	
Charge Temperature	-20 to 50°C -4 to 122°F	0 to 45°C 32 to 113°F		0 to 45°C 32 to 113°F			
Discharge Temperature	-20 to 50°C -4 to 122°F	-20 to 65°C -4 to 149°F		-20 to 60°C -4 to 140°F			
Safety Requirements	Thermally stable	Thermally stable, fuse protection common		Protection circuit mandatory			
Toxicity	Very High	Very High	Low	Low			

Excerpted form a more detailed table at: <u>https://www.epectec.com/batteries/cell-comparison.html</u>