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Examples of storing awelght

e Ascharge

e Ascurrent
— storing agiven current
— spike-based incremental update with
DW=func(W)
e Storing avoltage
— Incremental update with DW independent of W
— E-pots



Storing welght as charge

o Charge Q encodes state of system

e Waeight set by competition between tunneling and injection
(tunneling increases charge, injection decreases charge)
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Coin flipping
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from work by David Hsu
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Spike-based equilibrium point

Equilibrium weight <C(;_(t3> =0

Function of statistics of spike inputs V,,,, and V,
1

Q _oP (V)0
" & P(Van) 5
Circuit learns power-law probability ratio

Vi, and Vy,, can be controlled by arbitrary logic
functions

Problems:

— cannot read out Q directly

— mismatch between tun & inj




Using feedback

Since:

1. lyyy @nd l,y; are exponential

2. |lqyy and |y are poorly matched

one option is to use feedback when storing a weight.
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Storing welght as current

o Charge on floating gate shifts pFET transfer function
— Increase charge by electron tunneling (curve shifts right)
— decrease charge by electron injection (curve shifts |eft)
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Salf-convergent programming

S+ Weight stored as current
5+ Current to be stored is input; then can be disconnected.
= e Usetunneling to erase weight, injection to write
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Iout = Weight * Ibaseline

General transistor current equation:
K*Vg 1 CIN
Idsz%* loxe Ut Vs

Floating gate voltage: y

QFc N CinVIN
Cr Cr

VrG =

Floating gate transistor equation:
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W as current: incremental updates

Store weight as current |,
through M4

lw=exp(-1 Q)
e Spike-based learning
sgnasV,V,, signa
presence or absence of
discrete events L'
e Learning rule: update Q
magnitude depends on
previous weight

<%> U ' ¢P (Qvinj ) ~ WP (Vi)

dt
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Incremental Update

What we' ve seen so far:
. ° Charge Q stored on FG, possibly
L - encoding current through M2

E‘/' , *Tunneling and injection are

exponentia in Vfg; thus current

Vi, weight W affects the size of dW if
we simply pulse Vtun or
*But some learning rules require size
of update to be based only on input
and error: Dwj=a*Xxj*err

Q
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Weight-1ndependent Updates

» Feedback keeps Vg constant, so asingle pulse
always has the same effect
* Weight stored as output voltage Vw;

Xi Xj

Wi Wi

Z
Dwj=a*Xxj*err

from Miguel Figueroa
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Correcting matching of I+, /1n;
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VWw.

Ibias

allows amp speed
(current) to be
independent of Vw;

To make sure each
| -un PUlse deposits
an equal amount of
charge asonel ;
pulse, we adjust inj
and tun rate
individually for
each structure. A
synapse transistor
(not shown) can
store value of Vcitrl
and Vref for each
struct.



E-pots. long-term voltage storage
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See Harrison, Bragg, Hader, Minch, Deweerth, “A CMOS Programmable Analog Memory-Cell Array
Using Floating-Gate Circuits’, IEEE Trans. Circ. & Sys., Jan 2001



E-pot plots
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during programming.

See Harrison, Bragg, Hader, Minch, Deweerth, “A CMOS Programmable Analog Memory-Cell Array
Using Floating-Gate Circuits’, IEEE Trans. Circ. & Sys., Jan 2001
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Summary thus far

Store weight as charge (equilibrium reached when

lrun=ling
Store a copy of a current (with feedback)

Increment weight using inj and tun spikes, and
correcting mismatch between I+ & |\

Storing a copy of voltage
Weight-independent updates (keep V ; constant)
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Final suggestion

Use global tunneling as erase, and locally
controlled injection to program
 Locally controlled tunneling reguires either:
— switching high voltages
— local charge pumps (layout eats space)
e Global tunneling requires only small
tunneling junction at each FG



