Examples of storing a weight

- As charge
- As current
 - storing a given current
 - spike-based incremental update with ΔW =func(W)
- Storing a voltage
 - incremental update with ΔW independent of W
 - E-pots

Storing weight as charge

- Charge Q encodes state of system
- Weight set by competition between tunneling and injection (tunneling increases charge, injection decreases charge)

Coin flipping

Q encodes the coin's bias

Spike-based equilibrium point

- Equilibrium weight $\left\langle \frac{dQ}{dt} \right\rangle = 0$
- Function of statistics of spike inputs V_{tun} and V_{inj}

$$Q_{eq} = \left(\frac{P(\neg V_{inj})}{P(V_{tun})}\right)^{\frac{1}{b+c}}$$

- Circuit learns power-law probability ratio
- V_{inj} and V_{tun} can be controlled by arbitrary logic functions
- Problems:
 - cannot read out Q directly
 - mismatch between tun & inj

Using feedback

Since:

- 1. I_{TUN} and I_{INJ} are exponential
- 2. I_{TUN} and I_{INJ} are poorly matched one option is to use feedback when storing a weight.

Storing weight as current

- Charge on floating gate shifts pFET transfer function
 - increase charge by electron tunneling (curve shifts right)
 - decrease charge by electron injection (curve shifts left)

Self-convergent programming

- Weight stored as current
- Current to be stored is input; then can be disconnected.
- Use tunneling to erase weight, injection to write

General transistor current equation:

$$Ids = \frac{W}{L} * Io * e^{\frac{\mathbf{k} * Vg}{Ut}}$$

Floating gate voltage:

$$V_{FG} = \frac{Q_{FG}}{C_T} + \frac{C_{IN}V_{IN}}{C_T}$$

Floating gate transistor equation:

$$Ids = \frac{W}{L} \bullet Io \bullet e^{\left[\frac{\mathbf{k}(Q_{FG} + C_{IN}V_{IN})}{C_{T} \bullet Ut}\right]} = \frac{W}{L} \bullet Io \bullet W \bullet e^{\left[\frac{\mathbf{k}'V_{IN}}{Ut}\right]}$$
weight

W as current: incremental updates

Store weight as current I_w through M4 $I_w = \exp(-I Q)$

- Spike-based learning signals V_{tun}, V_{inj} signal presence or absence of discrete events
- Learning rule: update magnitude depends on previous weight

$$\left\langle \frac{dI_w}{dt} \right\rangle \propto I_w^{1-c} P(\neg V_{inj}) - I_w^{1+b} P(V_{tun})$$

Incremental Update

What we've seen so far:

- Charge Q stored on FG, possibly encoding current through M2
- •Tunneling and injection are exponential in Vfg; thus current weight W affects the size of dW if we simply pulse Vtun or Vinj
- •But some learning rules require size of update to be based only on input and error: $\Delta wj = \alpha *xj *err$

Weight-Independent Updates

- Feedback keeps Vfg constant, so a single pulse always has the same effect
- Weight stored as output voltage Vwi

from Miguel Figueroa

Correcting matching of I_{TUN}/I_{INJ}

Vref sets Vfg, and adjusts tunneling rate

allows amp speed (current) to be independent of Vwj

To make sure each I_{TIIN} pulse deposits an equal amount of charge as one I_{INI} pulse, we adjust inj and tun rate individually for each structure. A synapse transistor (not shown) can store value of Vctrl and Vref for each struct.

from Miguel Figueroa

E-pots: long-term voltage storage

See Harrison, Bragg, Hasler, Minch, Deweerth, "A CMOS Programmable Analog Memory-Cell Array Using Floating-Gate Circuits", IEEE Trans. Circ. & Sys., Jan 2001

E-pot plots

Fig. 3. Experimental measurement illustrating e-pot operation. Digital signals control tunneling and hot-electron injection, moving the e-pot output voltage up or down smoothly.

Fig. 4. Output voltages from all 39 e-pots from our 1.2-μm chip, after each element in the array had been programmed to a voltage proportional to the cosine of the e-pot position number. No crosstalk was observed between e-pot elements during programming.

See Harrison, Bragg, Hasler, Minch, Deweerth, "A CMOS Programmable Analog Memory-Cell Array Using Floating-Gate Circuits", IEEE Trans. Circ. & Sys., Jan 2001

Summary thus far

- Store weight as charge (equilibrium reached when $I_{TUN} = I_{INJ}$)
- Store a copy of a current (with feedback)
- Increment weight using inj and tun spikes, and correcting mismatch between $I_{TUN} \& I_{INJ}$
- Storing a copy of voltage
- Weight-independent updates (keep V_{FG} constant)

Final suggestion

Use global tunneling as erase, and locally controlled injection to program

- Locally controlled tunneling requires either:
 - switching high voltages
 - local charge pumps (layout eats space)
- Global tunneling requires only small tunneling junction at each FG