
Sheepdog: Learning Procedures for Technical Support

Tessa Lau, Lawrence Bergman, Vittorio Castelli, Daniel Oblinger
IBM T.J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598 USA

tessalau@us.ibm.com

ABSTRACT
Technical support procedures are typically very complex.
Users often have trouble following printed instructions de-
scribing how to perform these procedures, and these instruc-
tions are difficult for support personnel to author clearly.
Our goal is to learn these procedures by demonstration,
watching multiple experts performing the same procedure
across different operating conditions, and produce an exe-
cutable procedure that runs interactively on the user’s desk-
top. Most previous programming by demonstration systems
have focused on simple programs with regular structure,
such as loops with fixed-length bodies. In contrast, our sys-
tem induces complex procedure structure by aligning mul-
tiple execution traces covering different paths through the
procedure. This paper presents a solution to this align-
ment problem using Input/Output Hidden Markov Mod-
els. We describe the results of a user study that examines
how users follow printed directions. We present Sheepdog,
an implemented system for capturing, learning, and playing
back technical support procedures on the Windows desk-
top. Finally, we empirically evalute our system using traces
gathered from the user study and show that we are able to
achieve 73% accuracy on a network configuration task using
a procedure trained by non-experts.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms, Design, Human Factors, Experimentation

Keywords
Programming by demonstration, Hidden Markov Models,
alignment, user study, machine learning

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IUI’04, January 13–16, 2004, Madeira, Funchal, Portugal.
Copyright 2004 ACM 1-58113-815-6/04/0001 ...$5.00.

1. INTRODUCTION
Computer users spend a significant fraction of their time

maintaining their computing systems. Most of the time,
users performing maintenance procedures are following well-
worn paths that many users before them have trodden. Ex-
amples of such procedures include upgrading to the latest
version of an application, reconfiguring network settings af-
ter a sitewide upgrade, or removing a virus.

IT departments are typically responsible for communicat-
ing common procedures to many users. The two main ap-
proaches to communicating procedures are hardcopy docu-
mentation and automated scripts. Hardcopy documentation
is expensive to author. Moreover, as our preliminary user
study indicates, users often have difficulty following written
directions. At the other end of the spectrum, some IT de-
partments author common procedures as short scripts that
perform the procedure automatically on the user’s behalf.
In GUI environments, these scripts tend to be brittle, em-
ploying heuristics such as “wait 2 seconds for the window to
appear” or “click in pixel location (23, 5)”. These heuris-
tics could fail if the system load is high or the font size has
changed.

We define a procedure as a set of steps taken in pursuit
of a single well-defined goal. Based on an informal survey of
documented technical support procedures, as well as discus-
sions with technical support personnel, we note the following
characteristics of such procedures:

1. Technical support procedures typically have a num-
ber of branches that reflect variations in the environ-
ment within which they are performed. For example,
a procedure for establishing network connectivity has
different subprocedures depending on whether the con-
nection is dialup or a LAN.

2. Documentation and/or scripts rarely cover the full set
of conditions that are encountered by actual users. Un-
expected errors or configurations occur frequently.

3. Both documentation and scripts quickly become obso-
lete when the underlying system changes, and must be
updated often to remain useful.

4. Many maintenance procedures require human inter-
vention at certain points and thus are not amenable
to “one-click” automation. This is particularly true
when unexpected errors occur, and the user must for-
mulate a recovery strategy, or when the consequences
of taking a wrong action are very costly.

We propose a solution to the problem of capturing and
maintaining technical support procedures based on program-
ming by demonstration. Our Sheepdog system learns from
multiple experts, each performing the same procedure di-
rectly on a Windows desktop. Sheepdog records execution
traces, and uses them to build a model of the procedure
that can be interactively executed on a user’s system to per-
form that task. By observing multiple experts performing
the same task on differently configured systems, Sheepdog
learns the well-worn paths through the procedure. As end
users play back the learned procedure under a wide variety
of configurations, they produce new execution traces. A fu-
ture version of the system will be able to learn from these
execution traces as well, enabling the procedure to evolve
and cover more configurations over time.

Most previous programming by demonstration systems [11,
13] have focused on simple, repetitive tasks, where the user
iterates over the same sequence of actions multiple times.
These systems focus on the parameter generalization prob-
lem: inferring the parameters to an action given multiple
examples of the action performed under different conditions.
For example, if the user deletes one file in one example and a
different file in another example, a system might generalize
to “delete the oldest file”. These previous systems assumed
that the sequence of steps in the procedure was relatively
fixed.

In contrast, we assume that the action parameters are
relatively simple, but that the sequences of actions in each
demonstration vary considerably due to conditional branches
or other variations in the procedure. We define the align-
ment problem as the problem of learning the complex struc-
ture of a procedure given multiple execution traces. Specifi-
cally, technical support procedures tend to be very branchy,
with multiple paths to follow depending on the configura-
tion of the system, the error messages displayed on screen,
or the result of previous steps. As a consequence, procedures
for technical support must include conditional branches and
loops. Learning these procedures from demonstrations re-
quires the ability to create a single procedure by aligning
multiple traces, matching up steps that perform the same
role in the procedure even though they may occur at differ-
ent points within different traces.

In this paper, we propose a novel approach to program-
ming by demonstration based on Input/Output Hidden Markov
Models (IOHMMs) [1]. We begin in the first section with a
formalization of the alignment problem. The second sec-
tion describes our technical approach to alignment using
IOHMMs. The third section presents the results of a user
study investigating how users perform technical support pro-
cedures following written directions. Based on these results,
the fourth section presents our Sheepdog interface to inter-
active procedure execution. In the fifth section, we present
an empirical evaluation of our learning system on the user
study traces. Finally, we conclude with a summary of re-
lated work and directions for future work.

2. ALIGNMENT
We define a procedure Ψ as a graph of procedure steps ψ

in service of a single goal. Each step ψ represents a partic-
ular point in the procedure, such as “opened the TCP/IP
properties dialog, setting the DNS server.” At each step,
the user examines the state of the display, as well as the
result of previous actions, and decides what step to go to

Execution

Instrumentation

Abstraction

Learning

Figure 1: Architecture of the Sheepdog program-
ming by demonstration system

next. She then selects an action calculated to advance her
to that step. Note that actions may fail or behave unpre-
dictably, resulting in the user advancing to a different step
than expected. For example, a user trying to visit a web
page may find that the network is disconnected, requiring
her to jump to a different point in the procedure and repair
the networking configuration.

An expert performing a procedure generates an execution
trace. Each trace represents an expert’s path through the
procedure; different experts performing the same procedure
on different operating configurations will produce different
traces. At each point in time, the expert examines the world
state Si (the windows visible on the display, knowledge of
previous actions, and other contextual information), per-
forms an action Ai, and advances to the next step. We
define a trace T as a sequence of state-action pairs ti, where
ti =< Si, Ai >. Note that the trace may contain noise —
state-action pairs not relevant to the procedure.

We define an alignment φ of a trace onto a procedure as
a mapping from each element in the trace to a procedure
step ψj , such that φ(ti) = ψj . If φ(ti) = φ(tj), then the ex-
pert passes through the same procedure step multiple times
during the trace.

The alignment problem is defined as follows. Given a set
of traces T1, T2, ...TN , learn a procedure model Ψ such that
each trace is optimally aligned onto the procedure. The
optimal alignment maps all state-action pairs that are in-
stances of the same logical procedure step onto the same ψ.
Typically this alignment is only known by an expert familiar
with the procedure. However, in practice, alignments may
be evaluated using heuristics such as minimizing the number
of procedure steps or maximizing the likelihood of observing
a particular action at a particular step. In the next section
we describe our implemention, called Sheepdog, which uses
Hidden Markov Models to align traces and induce a proce-
dure model.

3. LEARNING PROCEDURES
Figure 1 shows the high-level architecture of the Sheep-

dog programming by demontration system. Instrumenta-
tion captures events at the platform layer (e.g., the Win-
dows operating system), and generates a stream of low-level
events such as window creation and mouse click activity.
This stream of events is passed to an abstraction component
that turns the low-level events into a sequence of higher-

Table 1: Grammar used to segment low-level events
into user actions

SingleClick(window w) := MouseDown(w)
DoubleClick(w) := SingleClick(w) SingleClick(w)
Keypress(w) := KeyDown(w)
StringEntry(w) := Keypress(w)

:= StringEntry(w) Keypress(w)

level user actions and snapshots of the world state. Multiple
such sequences are input into the learning component, which
builds a model of the procedure. This procedure model is
then passed to an execution component, which allows a user
to execute the procedure on a target system.

We have implemented this architecture on the Windows
operating system. The remainder of this section describes
each of these phases in turn, beginning with the instrumen-
tation and abstraction steps.

3.1 Capturing traces
We assume that an expert’s interaction with a computer

system consists of an alternating conversation in which first
the expert performs an action, then the system responds
with some change to the world state, followed by the expert
performing another action, and so on. In a real-world sys-
tem such as the Windows desktop, this fiction is difficult to
maintain; system events such as status updates may hap-
pen asynchronously, and users often perform multiple tasks
simultaneously. In this work we assume the user is con-
centrating on a single task, and that the user waits for the
system update to complete before performing the next ac-
tion. In future work we will investigate methods for learning
in more dynamic environments.

In order to generate a sequence of state-action pairs, Sheep-
dog abstracts from low-level Windows events produced by
the instrumentation layer (e.g., key i down, key i up, key
p down, ...) into a clean, higher-level representation of user
actions (e.g., type ipconfig into a console window). We em-
ploy a grammar parser to convert from sequences of low-level
events into higher-level actions that become the individual
actions in the learned procedure. Table 1 shows the set of
rules encoded in our grammar; extending the grammar to
recognize other actions such as drag-and-drop is an item for
future work. Note that spurious actions (such as moving
a window out of the way, or opening a window and then
immediately closing it) are segmented by the grammar and
converted into state-action pairs. We trust the alignment
process to filter out this noise across multiple expert traces.

In order to learn dependencies between world state and
user actions, a subset must be extracted from the large num-
ber of features in the world state. We make the assumption
that most of the features relevant to the user’s procedure
will be displayed on screen, noting that well-designed GUIs
are organized such that relevant information is displayed in
the right place for the user to act on. Moreover, we make
a further assumption: that the relevant information is dis-
played within what we call the prime window, the foreground
window with which the user is about to interact.1 Our sys-

1Although the prime window assumption has been sufficient

tem represents world state as a feature vector describing
the prime window and its contents including the title of the
window, the state of each of the input widgets in the win-
dow, and the contents of each of the editable widgets in the
window.

A sequence of state-action pairs output by the instrumen-
tation and abstraction layers forms a single trace. In order
to learn the correct procedure including branches and loops,
multiple traces of the same procedure must be aligned such
that similar actions in different traces are grouped together
into the same procedure step.

3.2 Aligning multiple traces
Different traces of the same procedure produce different

sequences of state-action pairs. For example, if one branch
of the procedure is only followed when a certain condition
holds (e.g., install an update only if the current driver ver-
sion is older than the desired version), then one trace may
contain extra state-action pairs not present in the second
trace. Thus, the procedure model must be able to produce
different action probability distributions depending on at-
tributes of the world state, such as the text displayed in the
label showing the current version of the driver.

Our solution to this problem is to use an extension of Hid-
den Markov Models (HMMs) [14] known as Input/Output
Hidden Markov Models [2]. A traditional HMM is trained
with a sequence of outputs (actions in our model), producing
a graph. Each node contains probability distributions over
the possible next nodes and the possible outputs. Hence, if
the HMM is in node Xt−1 at time t− 1, the HMM produces
a probability distribution for the node at the next time step:

Xt ∼ P (Xt | Xt−1)

and it produces a probability distribution over possible
actions:

At ∼ P (At | Xt)

IOHMMs extend traditional HMMs by making these two
probability distributions depend on the current world state:

Xt ∼ P (Xt | Xt−1, St)

At ∼ P (At | Xt, St)

Each node X in the graph is a hidden state representing
the procedure step being executed. In other words, if a
user is at step Xt−1 and sees state St on the screen, she
transitions to step Xt and produces action At.

We train an IOHMM using a modified Baum-Welch algo-
rithm [6], which performs an iterative expectation-maximization
computation. Pseudocode for the algorithm is shown in Ta-
ble 2. The occupancy matrix OT,t,n for trace T denotes
the probability of being in node n at step t in the proce-
dure. This matrix aligns each state in the trace with the
most likely HMM node for that state. The transition ma-
trix Rt,n1,n2 denotes the probability that the HMM is in
node n2 at step t given it was in node n1 at time t − 1. In
an IOHMM, the transition matrix is also a function of the
input state St.

for most of the procedures we have studied thus far, we plan
to lift this assumption in future work as needed.

Table 2: IOHMM training algorithm
1: /* Initialization */
2: OT,t,n = randomOccupancyMatrix()
3:
4: repeat until convergence:
5: /* Maximization step */
6: R = computeTransitionMatrix(O)
7: M = computeActionMatrix(O)
8: /* Expectation step */
9: O = computeOccupancyMatrix(R)

During the maximization step, the transition matrix is
recomputed given the best-known alignment of traces as
specified by the occupancy matrix. For each node n1 in
the HMM, a classifier is trained as follows. For each of the
(S,A) pairs in each of the training traces and each node n2,
a labelled training example (S, n2, w) is constructed where
S is the state observed during a trace, n2 is the node to
which to transition given that state, and w is the weight
of the example, which is a scaled version of the probability
that the HMM starts in node n1 and transitions to node n2.
The action matrix, built on line 7 in Table 2, encodes the
probability distribution over possible user actions given the
current alignment. It is computed similarly to the transi-
tion matrix, except that its output is the user action taken
at each step rather than the HMM node to which to tran-
sition. Our current system uses a nearest-neighbor learning
algorithm for classification. These classifiers, one per HMM
node, are applied to the world state St to compute the tran-
sition matrix for the next phase of the iteration.

Next, during the expectation step, the transition matrix is
held fixed and the alignment is recomputed given this tran-
sition matrix, creating a new occupancy matrix. We use the
standard forward-backward algorithm [14]. As in traditional
HMM training, the expectation and maximization steps are
repeated until the alignments have converged.

3.3 Executing learned procedures
Once trained, an IOHMM can be used to predict the next

node and action given an observation of the current state.
This formulation allows the procedure to represent condi-
tional branches, where different actions are taken based on
some attribute of the world state. For example, a procedure
for modifying a system’s DNS configuration could branch
depending on whether the machine is configured for a static
IP or for a dynamic IP.

During execution, our system captures the state-action
pairs representing the execution trace just as if the user were
demonstrating the procedure by hand. Steps performed by
Sheepdog are treated identically to steps performed by the
human. After the procedure is completed, the resulting ex-
ecution trace can be incorporated into the procedure in or-
der to update the learned model using information from this
user’s configuration. This capability enables our system to
continue updating its model of a procedure as it changes over
time, and incorporating knowledge about rare error condi-
tions thay may only happen on a small fraction of desktops.

Our system allows the procedure to be executed one step
at a time. At each point, the execution cursor represents a
probability distribution over the possible steps in the pro-
cedure (i.e., nodes in the HMM). Given the cursor and the

current world state, one can compute the distribution over
next steps by classifying the state using each of the classi-
fiers at each of the HMM nodes. The results are weighted
by the node probabilities to produce a new probability dis-
tribution over procedure steps. The most likely action is
predicted similarly given the new procedure step and the
current state.

One of the challenges of procedure execution is knowing
when to snapshot the system state in order to make the next
prediction. System changes occur asynchronously: applica-
tions may take varying amounts of time to respond to user
input; if an unexpected error occurs, the expected change
to the system state may fail to occur at all. Human users
of an interface have certain expectations about execution-
timing based on past experience. Yet how many users have
wondered whether their system has crashed or is just be-
ing slow when a window takes a long time to appear? Our
working heuristic is to wait for quiescence, or a period of
N seconds during which no system activity occurs. While
this is not a long-term solution, it works well enough for the
procedures with which we have experimented. In the fu-
ture, we will investigate alternative mechanisms for solving
this execution-timing problem. A possible approach is to at-
tach preconditions and postconditions to each user action to
determine at what time it would be applicable, potentially
learning these conditions based on prior experience.

The IOHMM procedure representation allows the proce-
dure to respond to changes in the world state that are not on
the “normal” (i.e., straight-line) execution path. For exam-
ple, if an error dialog pops up during a routine operation, the
procedure could predict taking action to recover from that
error, as long as that error was previously encountered by at
least one of the experts. In our experience using the system,
one author manually removed a DNS suffix from the listbox
right after the system had added that entry. Sheepdog im-
mediately noticed this change to the world state, and moved
the execution cursor back to the step before the change was
made, effectively ensuring that this step in the procedure
was completed before continuing with the procedure.

To gain insight into possible user interfaces for our system,
we conducted a preliminary user study investigating how end
users perform technical support procedures while following
printed directions. The next section presents the result of
the study.

4. USER STUDY
We believe that a programming by demonstration ap-

proach to technical support will be an improvement over
printed instructions, both for end users and procedure au-
thors. To see how end users could benefit from such a sys-
tem, we conducted a user study to observe how people follow
printed instructions, and to gather data to be used in train-
ing and evaluating our system.

4.1 Methodology
In the study, we captured the mouse and keyboard actions

of eleven subjects as they followed five pages of written in-
structions (including screenshots). These instructions were
copied directly from IBM’s internal technical support web-
site, modified slightly by us to make them more readable.
The instructions described a procedure to modify and ver-
ify the DNS configuration of a laptop computer. Each sub-
ject was presented with a different initial configuration, with

TCP/IP
Properties

Add
servers

suffix
Add

Remove
servers

suffix
Add

verify
Close &

Exit

Exit

Start

Remove
servers

IP=
9.x.x.x?

Click
Advanced

Static
IP?

NO

YES

NOYES

domain
Set

register
Uncheck

Figure 2: Network configuration procedure used in
user study. Ovals denote user actions; shaded ac-
tions are performed only for certain initial configu-
rations. Stacked ovals represent multiple actions in
sequence. Diamonds indicate choice points.

the eleven configurations chosen to be distinct and to span
the space of possible procedure pathways as well as possi-
ble. The subjects were instructed to follow the directions,
using them to restore the system to the correct configura-
tion. The complete procedure (shown in Figure 2) contains
a conditional branch as well as a number of configuration-
dependent steps — steps that are taken only for certain
initial configurations.

The subjects were selected from a population of researchers
and summer interns. We asked them to talk aloud as they
followed the directions, and recorded their voice and their
computer display on tape. We also had the participants
fill out a post-study survey rating their knowledge of Win-
dows networking configuration, the clarity of the instruc-
tions, their confidence that they followed the instructions
correctly, and their confidence that the machine was con-
figured correctly. We also asked an open-ended question
about how they thought the printed instructions could be
improved.

4.2 Observations
We noticed qualititive differences between subjects with

little Windows expertise and those who rated themselves as
having a lot of knowledge. Figure 3 shows the time du-
ration of the trace as a function of the subject’s Windows
knowledge (1 means novice, 5 means expert). Duration was
measured as the time in seconds from the time of the sub-
ject’s first user action (mouse click or keypress) to the time
of their last action. This metric does not take into account
time spent reading the instructions prior to acting, though
very few of our subjects actually read the directions before
starting. The graph shows that novice users and expert
users tended to spend more time following the instructions.
The novice took a long time because she didn’t understand

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 1 2 3 4 5 6

Ti
m

e
(s

ec
on

ds
)

Windows expertise

Trace duration varying with Windows expertise

Figure 3: Time spent on the procedure plotted
against Windows expertise.

the terms used, and confused “DNS server” with “IP ad-
dress”. The experts that took a long time skimmed over the
procedure quickly, sometimes making incorrect assumptions
about the configuration (“it’s a laptop, therefore it must be
using dynamic IP”) and then had to go back and fix mistakes
and steps missed due to haste.

Our observations confirmed that nearly all participants,
regardless of Windows knowledge, had difficulties following
printed instructions. In particular, we noted:

• people often had difficulty translating from text on the
page to widgets on the screen;

• people tended to miss portions of the instructions,
particularly separate portions of text that described
branches of a conditional; and

• people had difficulty following out-of-order instructions
and screenshots, especially those that weren’t identical
to what they saw on the screen.

4.3 Implications
It is clear to us that a guided approach to technical sup-

port procedures would be helpful to users. Novice users
could benefit from having annotations explaining the key
concepts in the procedure, and experts could benefit from
partial automation that helps them avoid mistakes. We
identified several ways in which an interactive help system
could be an improvement over printed instructions:

• automatically highlighting the target widget on the
screen,

• automatically detecting and branching on condition-
als, and

• providing a visual indicator of which step the user is
on in the procedure.

Based on observations from the study, conversations with
technical support personnel, and examination of printed doc-
umentation, we identified a number of desiderata for user in-
terfaces to interactive procedure playback. The next section
describes our findings and the resulting interface design.

Figure 4: Sheepdog user interface for playing back
a learned procedure.

5. USER INTERFACE
Our experience with technical support procedures led us

to formulate a set of three desiderata for interactive proce-
dure execution. First, the interface must be collaborative
rather than automated. We believe that no system will ever
be able to fully automate complex procedures such as techni-
cal support procedures; fully automated solutions are prone
to failure. Second, the interface must provide orientation
about where the user is in the procedure, what steps have
been taken, and what steps remain. Third, the interface
must be able to explain to the user what steps must be per-
formed, and why.

We have designed a Sheepdog user interface (Figure 4)
to satisfy the desiderata outlined above. We illustrate the
interface on the technical support procedure employed in
our user study: verifying and modifying a computer’s DNS
configuration. This procedure includes opening up the net-
working control panel, bringing up the TCP/IP properties
dialog for the machine’s ethernet connection, verifying that
the appropriate DNS servers are set for the current config-
uration, and closing down the dialog boxes.

Experts using our system to generate procedure traces
are presented with a macro recorder style interface that lets
them start and stop recording a trace. While recording is
active, our Windows instrumentation logs a trace of sub-
window creation/deletion and low-level user events. During
recording, the expert may add an annotation at any point
by typing text into the recorder window. The annotation is
associated with one or more actions (such as double-clicking
on an icon) the expert is about to perform, and may describe
the motivation behind a particular action or set of actions.

Once two or more traces have been recorded, the traces
are processed by our learning module to produce a model.
As part of this process, our system extracts a list of actions
from the procedure. This list of actions can be loaded into

the authoring/playback Sheepdog interface, where it may
undergo further authoring. Figure 4 shows the procedure
after it has been through the authoring process. The inter-
face lets an expert use drag-and-drop to reorder steps, add
hierarchical structure (such as the “Open TCP/IP proper-
ties dialog” shown in the screenshot), and define alternative
branches (such as the “Verify DNS suffixes” shown). Anno-
tations can also be added or edited in the learned procedure
during the authoring phase, as shown in the right hand side
of the window in Figure 4. Note that the authored proce-
dure structure and the annotations are layered strictly on
top of the learned procedure model; declaring that a branch
exists during authoring supplies visual information to the
consumer of the procedure, it does not actually change the
structure of the HMM. In the future we plan to investi-
gate methods for incorporating authored feedback into the
learned model.

The same authoring interface is used to play back learned
procedures on an end-user’s desktop. The execution cursor,
a blue bar highlighting a particular action in the procedure,
starts at the first action in the procedure. Concurrently,
the target of the first predicted action is highlighted on the
user’s screen. For example, the first step of this procedure is
to double-click on the “My Computer” icon on the desktop,
so Sheepdog visually highlights this icon by blinking it a
few times. When the user presses the play button (green
triangle), the system automatically performs that action,
takes a new snapshot of the world state, and updates the
execution cursor to point to the next action predicted by the
classifiers in the HMM. If this step had been a choice point,
the execution cursor would have jumped to the appropriate
step depending on the features detected on-screen.

6. EVALUATION
During the user study, we used our instrumentation to

capture the actions of our study participants as they per-
formed the procedure described in the printed instructions.
Since our participants were not true experts, all of the traces
contained incorrect or extraneous actions. Several of the
users failed to notice sections of the instructions, and thus
did not produce the desired network configuration. Nonethe-
less, even true experts make mistakes or accomplish tasks in
different ways. The strength of our system is its ability to
learn the procedure despite imperfect traces.

The user study traces contained a total of 474 actions, of
which 182 were unique. Figure 5 shows the number of ac-
tions as a function of their frequency in the traces. For ex-
ample, 110 actions occurred only once in the data, while four
actions occurred 14 times in the data. An example of one of
the most-frequent actions was to click on the “Advanced...”
button in the “Internet Protocol (TCP/IP) Properties” dia-
log box; all paths through the procedure required clicking on
this button. This figure shows the wide variation in actions
performed by various study participants. Because they were
all performing the same procedure, one might expect that
most of the actions performed would be common to many
participants. However, the figure clearly shows that the vast
majority of actions were performed only once.

To evaluate the performance of our learning algorithm, we
input all eleven user-study traces into our system. We fixed
the number of nodes for the HMM at fifteen and trained a
model using a k-nearest-neighbor [4] classifier.

We evaluate the accuracy of a learning algorithm by com-

 0

 20

 40

 60

 80

 100

 120

 0 2 4 6 8 10 12 14

N
um

be
r o

f a
ct

io
ns

times action was performed

Figure 5: Number of actions that occur with a spe-
cific frequency.

Table 3: Categorization of mispredicted actions

Equivalent to actual 10
Valid but not in instructions 9
Instructions unclear 8
Other 45

paring its predicted actions against the actions an expert
should have taken in the same situation. We produced a
test set by having an expert (one of the authors) rerecord
the complete procedure eleven times, starting with each of
the different initial configurations. During recording, low-
level system events such as window creation and mouse-
down/mouse-up events are logged to a trace file. We then
simulated the performance of the learning algorithm on each
of these test traces in turn. Each test trace was fed into our
system as if it were the data stream coming from a live Win-
dows system. Whenever our system detects that a high-level
user action was performed, it snapshots the world state just
prior to that action, generating a pair (S,A). World state S
is input to the IOHMM for classification. Given state S, the
IOHMM updates its node probability distribution. Given
the new node distribution and state S, the IOHMM outputs
a probability distribution over possible next actions, with
the maximally likely action being A′. If A = A′, we say
the action is correct. This process repeats until the trace is
completed. The accuracy of the IOHMM on this test trace
is the fraction of correctly predicted actions out of the total
number of actions in the trace.

Note that this metric is very conservative, and provides
a lower bound on the accuracy of our system. It measures
whether the HMM is able to produce exactly the same se-
quence of actions our expert performed. There are many
ways to accomplish the same task and complete the proce-
dure successfully; this metric does not take those into ac-
count.

Our model achieves on average 73% accuracy (min 55%,
max 86%) on the test traces using the procedure trained
on the user study traces. We believe this is a fairly strong
result, given that the people recording the training traces
failed to achieve the correct configuration of the system in
several cases. The test traces contain a total of 248 ac-

tions. Of those, our model incorrectly predicts 72 of those
actions. We classified the mispredicted actions into several
categories, shown in Table 3. Ten mispredicted actions were
equivalent to the actual expert action, but not equal, such
as selecting one of two shortcuts to launch the command
prompt, or pressing RETURN instead of clicking Add to
dismiss a dialog box. Nine mispredicted actions were valid
predictions, such as closing a dialog box, that were not
explicitly mentioned in the instructions. Eight mispredic-
tions were the result of poorly written instructions, causing
a number of study participants as well as the expert to take
incorrect actions.

Of the other mispredictions, most could be explained as
the system choosing the wrong subtask in the procedure
(such as predicting the action of removing a DNS server
when the expert instead chose to add a DNS suffix). These
predictions are the most difficult to choose correctly, in part
because there may be multiple correct orderings of the sub-
tasks. A focus in our future work will be to improve our
system’s ability to correctly predict these subtasks.

For comparison purposes, we developed a strawman algo-
rithm that always predicts the most likely action among the
actions in the user study traces. This algorithm produced
4% accuracy when tested on the expert-generated traces.

A procedure trained on traces gathered from novice users
may not be representative of procedures trained by true ex-
perts. For comparison, we trained an HMM using the traces
trained by an expert. Testing the HMM using the same ex-
pert traces, we observe 96% accuracy. Testing the expert-
trained HMM on the user-study traces, however, we observe
only 31% accuracy (min 0%, max 82%). Although some
of this difference results from inconsequential actions (such
as failing to press return at the end of a text field), this
measure gives an indication of how poorly the test subjects’
performance aligned with the sequence of instructions they
should have followed by reading the directions.

7. RELATED WORK
Our work follows in the tradition of programming by demon-

stration established by Cypher [3] and Lieberman [12]. Most
previous systems [11, 13] have addressed the generalization
problem — learning action parameters when the sequence
of actions is roughly static. In contrast, we learn procedures
where the action parameters are relatively simple (e.g., click
a button) but the complex program structure leads to vary-
ing action sequences across demonstrations.

Another area of related work is automatic programming [15]
and learning programs from traces [10]. Our work is unique
in applying IOHMM learning algorithms to the problem. We
believe that the probabilistic finite-state model representa-
tion underlying our system is well-suited to the conditional
structure of actual technical support procedures.

The learning algorithms we have used are adapted from
previous work on IOHMMs by Bengio and Frasconi [2, 7]
in the sequence-processing domain. We have extended the
original work to support the use of arbitrary classifiers dur-
ing the maximization step.

Our work is similar to prior work on task model acquisi-
tion [8] in the Collagen system. Collagen learns task mod-
els (represented as hierarchical plans) from traces of experts
performing a task. Collagen expects human experts to anno-
tate examples, marking optional steps or alternative paths.
In contrast, our system uses many traces gathered from mul-

tiple experts to statistically identify common patterns in the
procedure.

Another area of related work is in UNIX command line
prediction [5, 9]. Such systems typically examine only the
previouly entered commands, or features such as the cur-
rent working directory. Our work differs in that our system
examines the state of the display as well as the output of
previous commands in order to predict the next action.

8. CONCLUSIONS
This paper has presented a novel approach to the align-

ment problem in programming by demonstration, and illus-
trated it in the domain of technical support for Windows
desktops. Specifically, we make the following contributions:

• Formulation of the alignment problem in programming
by demonstration;

• A solution to the alignment problem using Input/Output
Hidden Markov Models;

• A study showing actual users’ behavior when following
printed instructions;

• Sheepdog, an implemented system for learning and
playing back technical support procedures on the Win-
dows platform; and

• An empirical evaluation of our system demonstrat-
ing 73% accuracy, trained on traces created by non-
experts.

We see many opportunities for future work. We plan to
conduct a user study of the Sheepdog system to determine
its effectiveness at assisting end users with technical support
procedures; results of the user study will inform Sheepdog’s
future development. We will investigate the problems that
occur as we scale up to larger, more complex procedures; one
area we want to improve on is the ability to incrementally
learn the procedure model given new traces. Another im-
provement will be to combine our alignment approach with
the parameter generalization work in previous programming
by demonstration systems, enabling our system to learn loop
variables and parameterized procedures. A final area of fu-
ture work is extending Sheepdog to support mixed-initiative
interaction, where the user can take over control from the
system to demonstrate novel paths through the procedure.
In particular, we plan to develop algorithms for detecting
when a user deviates from the well-worn path in the pro-
cedure, and develop light-weight methods for incorporating
the novel execution traces thus generated into an evolving
procedure model.

9. REFERENCES
[1] Y Bengio and P Frasconi. Input-output HMMs for

sequence processing. IEEE Transactions on Neural
Networks, 7(5):1231 – 1249, September 1996.

[2] Y. Bengio and P. Frasconi. Input-Output HMM’s for
Sequence Processing. IEEE Trans. Neural Networks,
7(5):1231–1249, September 1996.

[3] Allen Cypher, editor. Watch what I do: Programming
by demonstration. MIT Press, Cambridge, MA, 1993.

[4] B.V. Dasarathy, editor. Nearest Neighbor Pattern
Classification Techniques. IEEE Computer Society,
1991.

[5] B. D. Davison and H. Hirsh. Predicting sequences of
user actions. In Predicting the Future: AI Approaches
to Time Series Problems, pages 5–12, Madison, WI,
1998. AAAI Press. Technical Report WS-98-07.

[6] A.P. Dempster, N.M. Laird, and D.B. Rubin.
Maximum likelihood from incomplete data via the EM
algorithm. J. Royal Statistical Soc. B, 39(1):1–38,
1977.

[7] P. Frasconi and Y. Bengio. An EM approach to
grammatical inference: Input/output HMMs. In Proc.
IEEE Int. Conf. Pattern Recognition, ICPR ’94, pages
289–294, Jerusalem, October 9-13 1994.

[8] Andrew Garland, Kathy Ryall, and Charles Rich.
Learning Hierarchical Task Models by Defining and
Refining Examples. In First Int. Conf. on Knowledge
Capture, 2001.

[9] Benjamin Korvemaker and Russell Greiner. Predicting
unix command lines: Adjusting to user patterns. In
Proceedings of the Seventeenth National Conference on
Artificial Intelligence, pages 230–235, Austin, Texas,
July 2000. Menlo Park, CA: AAAI Press.

[10] Tessa Lau, Pedro Domingos, and Daniel S. Weld.
Learning programs from traces using version space
algebra. In Proceedings of the Second International
Conference on Knowledge Capture, 2003. To appear.

[11] Tessa Lau, Steven A. Wolfman, Pedro Domingos, and
Daniel S. Weld. Programming by demonstration using
version space algebra. Machine Learning,
53(1-2):111–156, 2003.

[12] H. Lieberman, editor. Your Wish is My Command:
Giving Users the Power to Instruct their Software.
Morgan Kaufmann, 2001.

[13] G. W. Paynter. Automating iterative tasks with
programming by demonstration. PhD thesis, University
of Waikato, February 2000.

[14] Lawrence R. Rabiner. A Tutorial on Hidden Markov
Models and Selected Applications in Speech
Recognition. Proceedings of the IEEE, 77(2):257–285,
February 1989.

[15] L. Siklóssy and D. A. Sykes. Automatic program
synthesis from example problems. In Proceedings of
the Fourth International Joint Conference on
Artificial Intelligence, pages 268–273, Tblisi, Georgia,
USSR, 1975. San Francisco, CA: Morgan Kaufmann.

