
Automatically Classifying Emails into Activities

Mark Dredze
Department of Computer and Information Science

University of Pennsylvania
3330 Walnut St.

Philadelphia, PA 19104 USA

Tessa Lau
IBM Almaden Research Center

650 Harry Road
San Jose, CA 95120 USA

Nicholas Kushmerick
Computer Science Department

University College Dublin
Belfield, Dublin 4, Ireland

mdredze@cis.upenn.edu, tessalau@us.ibm.com, nick@ucd.ie

ABSTRACT
Email-based activity management systems promise to give
users better tools for managing increasing volumes of email,
by organizing email according to a user’s activities. Current
activity management systems do not automatically classify
incoming messages by the activity to which they belong, in-
stead relying on simple heuristics (such as message threads),
or asking the user to manually classify incoming messages
as belonging to an activity. This paper presents several al-
gorithms for automatically recognizing emails as part of an
ongoing activity. Our baseline methods are the use of mes-
sage reply-to threads to determine activity membership and
a näıve Bayes classifier. Our SimSubset and SimOverlap al-
gorithms compare the people involved in an activity against
the recipients of each incoming message. Our SimContent
algorithm uses IRR (a variant of latent semantic indexing)
to classify emails into activities using similarity based on
message contents. An empirical evaluation shows that each
of these methods provide a significant improvement to the
baseline methods. In addition, we show that a combined ap-
proach that votes the predictions of the individual methods
performs better than each individual method alone.

Categories and Subject Descriptors: H.5 [Information
Interfaces and Presentation]: Misc

General Terms: Algorithms, Experimentation.

Keywords: Activity management, email, machine learn-
ing, text classification.

1. INTRODUCTION
The goal of activity-centric research is to provide tools for

people to manage their activities more effectively. We view
activities as a representation of collaborative work practice.
Activities involve a set of people, who may each play dif-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IUI’06, January 29–February 1, 2006, Sydney, Australia.
Copyright 2006 ACM 1-59593-287-9/06/0001 ...$5.00.

ferent roles in the activity (e.g., the coordinator vs. par-
ticipants). Activities often have state (e.g., completed vs.
in-progress). They typically have a goal (e.g., producing a
report or making a decision), and they might contain formal
or informal processes for reaching that goal. Activities may
be related to other activities in ways such as composition
(one activity being a part of another) or dependency (one
activity must be completed before another can proceed).
Examples of activities include: organizing a conference, re-
viewing papers, purchasing equipment, managing candidate
interviews, and making design decisions, for example.

Several activity-centric systems have emerged recently [5,
17, 7, 16]. Most of these systems have focused on the cross-
application nature of activities, and provide a means to
gather together an activity’s documents, emails, people, chat
transcripts, and related information into a single view, so
that when working on the activity, all of the artifacts re-
lated to that activity are near at hand.

At the same time, email has become the primary com-
munications mechanism for people to coordinate collabora-
tive work [8, 23], particularly as workplaces are distributed
across multiple geographies. Yet despite email’s importance,
none of the activity systems to date provide a compelling
story for integrating email with activity management. Our
goal in this research is to provide better tools for people to
manage activities more effectively, focusing on email as the
medium people use to communicate about activities.

In this paper, we focus on the problem of classifying emails
into activities, in order to automatically populate activities
with the emails related to them. Our approach leverages two
characteristics of activities: the observation that activities
connect groups of people together and the observation that
activity-related email tends to center around particular top-
ics. In addition, we have found that a combined approach,
which votes together the predictions of the base models,
can perform better than each individual model alone, re-
sulting in 93% overall accuracy and an F-measure of 0.81 on
a dataset of 1146 emails.

Specifically, this paper makes the following contributions:

• The SimSubset and SimOverlap algorithms for email
activity classification that compare the people involved
in an activity against the recipients of a message;

• The SimContent algorithm for email activity classifica-

tion based on content similarity using iterative residual
rescaling [2], a form of latent semantic indexing [6];

• An empirical evaluation of our algorithms showing that
each one performs better than baseline approaches of
either message threads or a näıve Bayes classifier; and

• Empirical evidence showing that a simple voting method
for combining the results of the individual algorithms
performs better than each algorithm alone.

2. PRIOR WORK
Classifying email into activities is conceptually similar to

the traditional problem of email classification. Most work in
email classification has focused either on spam detection [19,
20] or automated foldering [21, 1, 12]. The vast majority
of email classification systems have employed text classifi-
cation techniques such as näıve Bayes, rule learners, and
support vector machines. Our work is different from tradi-
tional email classification in a number of ways. First, most
assume that the set of folders is static and known ahead of
time (with the notable exception of SwiftFile [21]), whereas
we are investigating the more challenging problem where the
set of class labels (activities) grows over time. Second, most
email classification systems examine only the words in the
message body and headers to predict its folder classification.
Since our focus is on activities, which involve features such
as a set of people with specific roles to play, rather than fold-
ers, which are only collections of messages, we can leverage
activity-specific features in order to improve performance.
Finally, foldering often assumes every message is placed in
a folder, whereas in our data we have found that the vast
majority of emails are not part of a managed activity.

A few email classification systems go beyond message con-
tent in classifying email. For example, Kiritchenko et al [11]
mine temporal patterns in email such as the fact that mes-
sages to a mailing list all tend to arrive at the same time.
Based on their results, we plan to leverage temporal patterns
in activity-related email in the future. As another example,
emailSift [1] uses subgraph detection to find patterns that
characterize all the messages in a folder, to build a model of
the folder. We imagine applying their techniques to charac-
terizing the email associated with an activity.

Recent research has investigated challenges in activity-
oriented email. Kushmerick et al [13] examined email activ-
ities that represented structured business processes such as
purchasing books online, and reverse-engineered the struc-
ture of processes by learning them from representative email
transactions. While those techniques worked well for fairly
structured activities, this work addresses the more general
problem of less-structured activities that are not necessarily
generated by formal business processes.

Khoussainov et al [10] inferred relationships amongst mes-
sages in less-structured activities. However they assume a
batch-processing model in which activities are to be discov-
ered within an archive of past messages; in contrast, here we
attack the more challenging problem of tracking an evolv-
ing set of activities as they unfold. Similarly, others have
attempted to discover activities in a user’s inbox using clus-
tering [9, 22]. However, these systems are not dynamic. In
contrast, we build and evaluate our models in a way that
better approximates real-world, ongoing usage rather than
a one time clustering.

Figure 1: EAM Thunderbird extension displaying
the contextual activity pane in the lower left.

Others have explored activity-oriented systems that help
users manage their workload more effectively. For instance,
Bellotti’s Taskmaster system [3] enhances an email client
to function as a task management system. It assumes as a
starting point a correspondance of tasks to message threads.
In our work we have found that this does not sufficiently
capture the entire activity. Muller’s ActivityExplorer sys-
tem [17] enables people to collaborate around shared arti-
facts, but does not integrate collaboration with email, de-
spite the observations made by many email researchers [23]
that email is used extensively for collaboration and activity
management.

Finally, semantic email, in which an email message con-
tains an embedded query allowing a system to process the
message as part of a larger task, pursues the same goals as
our system [15]. Our projects are complementary in that
semantic email seeks to utilize existent meta-data while we
attempt to generate meta-data given the emails. Even if
semantic email applications are adopted, however, they will
still need to interact with legacy systems and this is where
a system such as ours could prove useful.

3. EMAIL-BASED ACTIVITY MANAGEMENT
In order to motivate our work on email activity classi-

fication, in this section we describe several different user
interfaces we have prototyped to illustrate the benefit of in-
tegrating email with activities.

3.1 Activity pane
Figure 1 shows an extension to the Thunderbird email

client that displays an activites pane in the lower-left cor-
ner. Each activity in this display can contain a set of email
messages and a set of people involved in the activity; in
the future, this representation could incorporate documents
(such as mail attachments), instant messaging transcripts,
and other artifacts that may be related to an activity.

The pane shows all the activities that involve both the
current user and the sender of the currently-selected email
message. The activity list is prioritized by relevance, using
the SimOverlap metric described later in this paper; activi-
ties whose members are most similar to the set of recipients
in the message are displayed at top of the list.

Figure 2: An activity inbox displaying six instances
of two activities, along with the process structure
of each (bubble diagrams) and the current state of
each (light grey dots). Highlighted messages indi-
cate “unread” progress through the activity.

A new activity can be created by right-clicking on an email
message. The user is prompted to enter the name and de-
scription of the activity, and the set of people involved in the
activity; the name and people are automatically extracted
from the subject and recipients of the target email. New
messages can be associated with an activity by dragging
and dropping them onto the activity pane.

Activities are published to a central server, and every par-
ticipant in an activity will see the activity displayed in her
activity pane when relevant. Shared activities are a collab-
orative artifact: any changes to an activity are made vis-
ible to all members of the activity. Thus all participants
share responsibility for updating the activity, and all mem-
bers benefit from the organizational work of other members.
We have implemented this interface in Thunderbird, and it
is currently in use by a handful of researchers.

While the contextual activity pane automatically displays
all activities that may be relevant to a particular selected
message, the system does not automatically associate mes-
sages with activities. Currently this is only accomplished
manually though drag-and-drop. In order to build up a
more complete view of the email exchanges that contribute
to an activity, users must collectively expend a lot of effort
to manually associate messages with activities.

This paper addresses this problem of automatically clas-
sifying messages into activities. The algorithms we have
developed here could be used to extend this prototype to
automatically populate activities with relevant messages.

3.2 Activity inbox and Activity manager
One of our future research goals is given a set of mes-

sages in an activity, automatically extract the structure of
that activity. For example, an activity might include a for-
malized process, so the structure could include the steps in
the process as well as the user’s current state in completing
that process. Alternatively, an activity might have a sub-
mission deadline, with messages leading up to that dead-
line acquiring more importance. The vision is to provide
activity-centric tools rather than message-centric tools, and
let users manage activities as a whole, rather than individual
mail messages.

Figure 2 shows a conceptual UI for email-based activity
management. Suppose that instead of checking one’s email
inbox for new messages, one could check one’s activity inbox
to see what has happened on each activity since the last time
it was checked. This interface groups messages together by
activity, and shows that (for example) there is action on one

Figure 3: Activity manager with a list of activities
and associated emails. The corner pane shows peo-
ple and attachments related to the current activity.

of the “patent” activities and one of the “PBC” activities.
The colored-dot diagrams show a finite-state-machine repre-
sentation of the structure of each activity; the light grey dot
shows where the new message occurred, within the context
of the rest of the activity.

Figure 3 shows a third activity-centric email client. It
models activities as instances of finite-state process mod-
els in which messages correspond to transitions between
states [13]. This model is general enough to handle both
structured computer-human activities (e.g., e-commerce trans-
actions) and informal human-human activities (e.g., meet-
ing scheduling, collaborative document editing). This client
seemlessly integrates both ends of this spectrum: the algo-
rithm of [13] is used to automatically label structured ac-
tivities (“message 1 is an order confirmation”, “message 2
is a delay notification”), and the algorithm of [10] is used
to label informal activities with speech acts [4] (“message 1
is a meeting request”, “message 2 is a meeting confirmation
and a commitment to send an updated document”).

As these examples show, our larger goal is to infer struc-
ture from the unstructured email that make up these activi-
ties, and to build tools that make this structure accessible to
users to help them manage their activities more effectively.
As manually categorizing messages is tedious and infeasible
given the volumes of email users receive, automated email
activity classification is the first step towards this goal.

4. EMAIL ACTIVITY CLASSIFICATION
All of the UIs described in the previous section would

benefit from a system that can identify, given a new mes-
sage, which activity it belongs to. Thus, we define the email
activity classification problem as follows:

Given a set of existing activities A = A1, A2, ..., AN , the
null activity ε, and a message M , output a probability dis-
tribution P over activities such that

P
i∈A∪{ε} P (i|M) = 1.

Note that this is an incremental learning problem — the
set of class labels can (and will) change over time as new
activities are created by the user. However, at a particular
point in time, the classifier is only expected to be able to
predict activities that have previously been created. The
intent is that ε is a distinguished activity label meaning the
message is not associated with any activity.

Predicted label
Correct
label

No activity Activity A Activity B

No activity (A) Cor-
rect

(B) False positive

Activity A (C) False
negative

(D) Cor-
rect

(E) Incor-
rect

Table 1: Confusion matrix showing possible pre-
dicted outcomes.

4.1 Experimental methodology
Our evaluation was designed to simulate a single user’s

experience with an activity management system. We assume
that messages are received sequentially in temporal order.
According to our model of system usage, when a user sees
the first message that defines a new activity, she creates a
new activity and associates that message with the activity.
The user will then expect the system to correctly identify
and associate any further activity-related messages. This
model leads us to an incremental online learning evaluation.

We evaluate our system using a corpus of 1146 email mes-
sages gathered from one user’s email account, of which 149
were labeled with the activity to which they belonged.1 The
corpus spanned a period of 90 days. Since activities were
manually labeled, we assume that the labels are correct but
not complete; that is, messages that have an activity label
have the correct label, but not all messages that belong to
an activity may have been labelled as such. A total of 27
distinct activities were identified, ranging in size from one
to 38 messages. Examples of activities included organizing
an event at a conference, reviewing papers for a workshop,
planning a visit to a university, brainstorming about new
features to include in an upcoming product, ordering er-
gonomic equipment, and interviewing a job candidate.

We designed the following experimental methodology. First
we sort the messages in temporal order, simulating the order
in which the user sees them. We assume that messages not
marked as belonging to any activity are labelled with an ex-
plicit “no activity” label ε (i.e., the null activity). For each
message, the system predicts which activity this message be-
longs to, including the null activity. We then incrementally
train the classifier with this message, and repeat on each
remaining message. One exception to this rule is the first
labelled message of every activity; it would be impossible for
the system to correctly predict the label on these messages
because it has never seen an instance of that activity before.
We expect the user to manually identify each new activity
as it starts. So in our experiment, we detect the first mes-
sage of each activity, assume that the user has intentionally
labelled it, and do not test on this message.

Depending on how the classifier will be employed in an
actual system, the straightforward approach of measuring
accuracy does not always represent the quality of a user’s
experience with the system. Table 1 shows a confusion ma-
trix that categorizes different errors the system can make.

If the message is not part of an activity, our system can
either label the message as no-activity, or as belonging to
some activity. The former is correct, the latter is incorrect.
If the message actually belongs to activity A, our system

1While in the general case messages may belong to multiple
activities, we leave that as a topic for future work.

may either incorrectly predict no-activity, correctly predict
activity A, or incorrectly predict activity B.

For instance, a recommendation-style UI might present a
ranked list of the top 3 predicted activities given a message,
and have the user explicitly select one of them. (This is the
UI paradigm used in SwiftFile [21].) In this type of UI, the
number of false positives (cell B) is largely irrelevant because
if the system predicts an activity for a message that the user
does not want to associate with an activity, she can ignore
the prediction with no harm. On the other hand, false neg-
ative errors (cell C) are much more expensive for the user to
recover from, because it means she cannot simply associate
the message with one of system’s predicted activities, but
must instead browse the complete list of activities in order
to locate the correct one.

The recommendation accuracy of a system measures how
useful it is at recommending the correct activity from a list
of N activities. We define the recommendation accuracy
of a system Accrec,N = D

D+E
in terms of Table 1, where

N is the number of recommended activities. For example,
Accrec,1 is the accuracy when the system only recommends
a single activity, and Accrec,3 is the accuracy of a system
that recommends three activities and is correct when the
correct activity is in the set of three recommendations.

Alternatively, in a UI such as Figure 1 where messages
could be automatically added to activities, errors in box (B)
might be less important than errors in box (C), under the
assumption that a user could easily remove extraneous mes-
sages from an activity, but would find it difficult to locate
“lost” messages that are not associated with any activity.

In a more extreme case, if a user comes to depend on an
activity inbox view (Figure 2) to be notified of new happen-
ings on his activities, then failing to categorize an incoming
message as part of one of those activities could be disastrous.
On the other hand, miscategorizing a message as belonging
to one activity when it actually belongs to another seems to
be less critical, because once a user has been notified of the
incoming message, he can correct the system’s classification
to place it in the correct activity.

The recognition accuracy of a system, Accrcg, measures
how useful it is at classifying messages into activities. It
depends on the system’s performance on both messages that
do belong to an activity, and messages that are not part of
an activity. We define recognition accuracy as Accrcg =

A+D
A+B+C+D+E

.
However, the accuracy does not necessarily reflect the

true usefulness of a system. We also measure the precision
Prec = D

B+D+E
and the recall Rec = D

C+D+E
as well as the

F-measure F = (β2+1)∗Prec∗Rec

β2∗Prec+Rec
which is a combined preci-

sion/recall number that decreases the weight of no-activity
examples and emphasizes the system’s performance on posi-
tive examples based on the parameter β. In our experiments
we set β = 3. We believe that F is a more representative
measure of the quality of a user’s experience with a recog-
nition system since it favors activity completeness over ac-
curacy. This reflects the higher user cost of missing activity
messages rather than viewing several extra messages.

We use two baselines for evaluation of our methods. The
first is the use of message threads to identify activity mem-
bership. For each message marked as being part of an activ-
ity, all subsequent replies or follow-ups to that message are
also labeled as belonging to that activity. This is the method

used, for example, in Bellotti’s Taskmaster system [3]. We
also compare against an updatable näıve Bayes classifier,
used by many prior systems for email classification.

In order to verify that our results are not specific to the
particular ordering of messages in our corpus, in several of
our experiments we report average results over a number
of runs with randomized message ordering. There may be
content within the sequence of messages in an activity that
is time-dependent. Therefore, we randomized the order in
which activities occurred in the dataset, while preserving
the original ordering of the messages within an activity.

5. SIMOVERLAP AND SIMSUBSET
Our first algorithm for email activity classification takes

advantage of the observation that activities tend to involve
specific people with specific roles, which is manifested in the
fact that messages are exchanged between different people
during the activity. For a message M , let ppl(M) denote
the set of all people (i.e., distinct email addresses) in the To,
From, and CC fields of M . We generalize ppl from messages
to activities by defining ppl(A) =

S
M∈A ppl(M).

Given this model, we can define the similarity between an
activity A and a message M . We have experimented with
several different similarity metrics. The first is symmetric,
based on the overlap between the people in the activity and
the people in the message:

SimOverlap(A, M) = 2|ppl(A)∩ppl(M)|
|ppl(A)|+|ppl(M)|

This metric is 0 when there is no overlap between the
people in the activity and the message, and is 1 when the
set of people in the activity is identical to the people in the
message. Since the user who received the message is (by
definition) a recipient of every message and also belongs to
every activity under consideration, we remove the user from
both ppl(A) and ppl(M) before computing this metric.

A second metric uses the observation that some messages
related to an activity may be exchanged with only a subset of
members in the activity. This metric calculates the fraction
of people in the message that belong to the activity:

SimSubset(A, M) = |ppl(M)∩ppl(A)|
|ppl(M)|

As before, we remove the current user from the activ-
ity and the message when calculating this metric. This
metric is 0 when the message is not addressed to anyone
in the activity, and 1 when all the people addressed by
the message are part of the same activity. Compared to
SimOverlap however, SimSubset does not decrease when
a message is not addressed to all the people in an activity,
which matches our informal observations of activity-oriented
messaging. We hypothesize that SimSubset will perform
better than SimOverlap at email activity classification.

We also experiment with different thresholds, so that if
the similarity is not above a certain threshold, the system
does not make any prediction. No prediction is considered
equivalent to predicting the null activity.

5.1 Evaluation: recommendation
We begin by evaluating the person-based algorithms on

the recommendation task (predicting the top N activities
given a message, for N=1 and N=3, and determining whether
the correct activity is in the list). In this task, we assume

Algorithm Accrec,1 Accrec,3

SimOverlap 0.5 0.61 0.61
SimOverlap 0.7 0.39 0.39
SimOverlap 0.9 0.24 0.24
SimSubset 0.5 0.87 0.91
SimSubset 0.7 0.83 0.86
SimSubset 0.9 0.79 0.83
Threading 0.58 N/A
Näıve Bayes 0.24 0.40

Table 2: Recommendation results for person-based
models, averaged over 100 random message order-
ings and 14 random orderings for näıve Bayes. Each
row represents the use of a different person-based
similarity metric, and the corresponding threshold.
Threading and näıve Bayes are baseline methods for
comparison.

that the user is only interested in the system’s predictions
for messages that truly belong to an activity, and that for
no-activity messages, the user will simply ignore the sys-
tem’s recommendations with no ill effect. Thus we designed
the experiment as follows.

For each message that belongs to an activity, use the cur-
rent model to predict up to N activities. If the correct ac-
tivity label is in this list, then count this example as correct.
Train the activity model with this message, and repeat on
the next message that belongs to an activity. The accuracy
of the system is the fraction of correct messages out of the
total number of activity-labelled messages.

We compare the person-based models against two base-
line approaches: threading and a näıve Bayes classifier. The
threading approach uses the in-reply-to field in message head-
ers to group together messages in a thread. If a message is
a reply to a previous message, then predict the activity to
which the previous message belonged, otherwise predict the
null activity. As Threading cannot predict more than one
activity, we only report results for the N=1 experiment.

We used an updateable (online) näıve Bayes classifier from
the Weka [24] toolkit. For features we produced a stemmed
version of the message body using a Porter stemmer [18]. In
addition, we also provided features from the message header,
including the subject and people who sent and received the
message. This provided the classifier with the information
available to our other methods. We ran each test 14 times
using a randomized message ordering as explained above.

Table 2 shows the results of this experiment for the person-
based activity models. On this recommendation task, the
SimSubset metric clearly produces higher accuracy than the
SimOverlap metric, as we expected. Surprisingly, the top-
1 and top-3 figures are quite similar. We interpret this as
meaning that, at least within this data set, the set of peo-
ple is a fairly good indicator of the activity, and where any
match exists, the person-based activity model will make the
correct prediction. However, an investigation of the data
reveals that in many cases, the set of people in an activ-
ity changes over time, which causes a person-based activity
model’s accuracy to decrease. For instance, in one of the ac-
tivities involving ordering a piece of equipment, the activity
started out with just the employee and a manager, but then
expanded over time to include the site equipment manager,
a procurement specialist, the manufacturer, a reseller, and

Algorithm Accrcg Prec Rec F
SimOverlap 0.5 0.82 0.42 0.60 0.58
SimOverlap 0.7 0.87 0.60 0.39 0.40
SimOverlap 0.9 0.85 0.49 0.24 0.26
SimSubset 0.5 0.78 0.39 0.88 0.79
SimSubset 0.7 0.86 0.52 0.84 0.79
SimSubset 0.9 0.87 0.55 0.80 0.77
Threading 0.93 1.00 0.58 0.60
Näıve Bayes(M = 60) 0.28 0.11 0.29 0.21

Table 3: Recognition results for person-based mod-
els, on the original message ordering. Näıve Bayes
results based on 14 randomized runs with oversam-
pling. Prec is the precision, Rec is the recall, F is
the F-measure with β = 3.

an automated workflow system. One limitation of person-
based models is that they will not perform well on activities
whose membership changes dramatically over time.

5.2 Evaluation: recognition
The recognition task is more challenging because the sys-

tem must distinguish between messages that are part of an
activity, and messages that are not. In this experiment, we
train the system on all messages, not only messages that
are part of an activity. No-activity messages are treated as
belonging to the null activity. The model is allowed to pre-
dict any previously-seen activity or the null activity. The
SimOverlap and SimSubset models output the null activity
when there is no matching activity whose score is higher
than the specified threshold.

To optimize the näıve Bayes classifier for F , we oversam-
pled the activity messages. Instead of training on each activ-
ity message once, the classifier trained on each activity mes-
sage M times while training on no-activity messages only
once. The result was a more balanced dataset and an im-
proved F -measure. We varied M to produce the optimal
oversampling amount; F increased as M increased. We se-
lected an optimal M = 60 for our baseline comparison.

Table 3 shows the results for the person-based models on
this recognition task. Although according to the Accrcg met-
ric the SimOverlap methods perform best, examination of
the raw numbers reveals that the SimOverlap methods ac-
tually perform very poorly at correctly categorizing activ-
ity messages into activities (cell D). The high accuracy is
primarily due to the fact that they correctly categorize no-
activity messages as belonging to the null activity (cell A).

In contrast, the F metric decreases the importance of
no-activity messages and provides a more accurate metric
of how useful these models would be in an actual activity
recognition system. As expected, SimSubset models perform
better using this metric than either SimOverlap, Thread-
ing or näıve Bayes. The dramatic difference between näıve
Bayes and our methods shows the difference between stan-
dard foldering and our email activity classification research.

As SimSubset 0.5’s recall is better than SimOverlap or
SimSubset with higher thresholds, we chose it as the repre-
sentative person-based algorithm for the rest of the paper.

6. SIMCONTENT
While some activities consist of distinct sets of people, it

is often the case that the same set of people may collabo-

rate on multiple activities. For instance, a team of cowork-
ers may work together on an IUI submission, while simul-
taneously preparing the next release of their software into
product. Alternatively, as discussed above, the people in-
volved in an activity may change over time. Person-based
activity recognition approaches will break down in both of
these situations. However, we hypothesize that there is still
a common thread in the content of these messages. Thus,
our second activity classification algorithm incorporates in-
formation about the textual content of messages using a
variant of latent semantic indexing [2, 6].

Our SimContent algorithm is based on the observation
that messages in an activity tend to concern similar topics.
Hence, if message M1 addresses the same topics as another
message M2 and M2 is associated with activity A, then it is
likely that M1 is also associated with activity A.

To determine message similarity, we use an algorithm
based on latent semantic indexing (LSI). Unlike traditional
bag-of-words models and similarity metrics that are based
on how many words two documents share in common, LSI
projects documents onto a reduced-dimensionality subspace,
and computes similarity as the distance between two doc-
ument vectors in the reduced subspace. The intent of sub-
space projection is to capture concepts inherent in similar
documents, such that each dimension in the subspace corre-
sponds to a different concept in the document corpus.

We use LSI to classify emails into activities as follows.
Assume that the user has labelled all activity-related email
received thus far (and that unlabelled messages are implic-
itly labelled with the null activity). Build an LSI index
containing all message documents seen thus far. On receipt
of a new incoming message, compute its similarity to all doc-
uments in the index, and output a ranked list of documents
and their corresponding scores. Apply activity labels to the
documents in order to produce a ranked list of activities.
Given this ranked list, we formulated a number of metrics
for producing a ranked list of activities most similar to a
given message:

• Top N: output the first N unique activity labels.

• Weighted score (P, N): for the P most similar doc-
uments, group them by activity label. Add up the
scores for all documents in each activity, and output
the N activities with the highest score.

In our experiments, the weighted-score metric with P = 5
resulted in the highest performance on the recognition task,
so we have used that metric for all further experiments.

One improvement to LSI, iterative residual rescaling (IRR)
[2], purports to improve LSI’s performance when the doc-
ument corpus contains a non-uniform distribution of docu-
ment topics. This distribution is probably an accurate char-
acterization of activity-oriented email; based on our evalu-
ation dataset, for example, 88% of email does not belong
to any activity, whereas the remaining 12% is unevenly dis-
tributed over 27 different activities. Thus we hypothesize
that IRR will do better than LSI at the recognition task.

6.1 Evaluation: recommendation
Table 4 shows the results for the recommendation task

for SimContent. Because the LSI and IRR classifiers take
significant amounts of time to train, we report results only
on the original message ordering of the dataset. Both LSI
and IRR perform better than our baselines.

Algorithm Accrec,1 Accrec,3

LSI, weighted-score(5,3) 0.84 0.92
IRR, weighted-score(5,3) 0.77 0.90
LSI, top 3 0.86 0.92
IRR, top 3 0.86 0.94
Threading 0.58 N/A
Näıve Bayes 0.24 0.40

Table 4: Recommendation results for SimContent
models, using several different metrics to calculate
the top scoring activities, evaluated only on the orig-
inal message ordering. Threading and näıve Bayes
are baseline methods for comparison.

Algorithm Accrcg Prec Rec F
LSI 0.86 0.52 0.76 0.72
IRR 0.87 0.54 0.76 0.73
Threading 0.93 1.00 0.58 0.60
Näıve Bayes(M = 60) 0.28 0.11 0.29 0.21

Table 5: Recognition results for SimContent exper-
iments. The weighted-score (P=5) metric was used
to calculate the most likely activity.

Surprisingly, IRR does not perform better than LSI. We
hypothesize that this is because for the recommendation
task, the size of topics is relatively uniform (between 1-38
messages), and thus IRR’s advantages in handling unevenly-
sized topics are not relevant here.

6.2 Evaluation: recognition
Table 5 shows the results for SimContent on the recog-

nition task, using the weighted-score metric (P = 5) for
calculating the most likely activity. Again, the results are
reported only for the original message ordering.

LSI and IRR produce nearly the same results on this prob-
lem. Compared to Threading, LSI and IRR are less precise
but have higher recall, indicating that they can more of-
ten correctly identify messages as being part of an activity
than Threading. This is reflected in the higher F-measure
score for LSI and IRR compared to Threading. For an ac-
tivity management system where it is more important that
a message is identified as part of an activity than to have
it be correctly classified into the right activity, we believe
that the SimContent algorithms are an improvement over
the baseline Threading method.

7. COMBINED MODEL
While our SimSubset and SimContent methods perform

better than the baseline Threading and näıve Bayes meth-
ods, we wanted to improve the system’s performance on the
recognition task even further. We observed that it was often
the case that when two base methods agreed on an activity
label, it was likely to be correct. This observation led us
to try a simple voting approach: for each message, generate
the results of all three base methods. If the method fails to
make a prediction, predict the null activity. Give each re-
sulting prediction one vote; the final prediction is the label
with the most votes, choosing randomly in case of ties. We
selected as our three base learners Threading, SimSubset 0.5
and IRR weighted-score (N=5).

Table 6 shows the results of applying this voting method

Algorithm Accrcg Prec Rec F
Threading 0.93 0.99 0.58 0.60
SimSubset 0.70 0.33 0.86 0.74
SimContent 0.83 0.46 0.74 0.70
Voting 0.93 0.74 0.81 0.81

Table 6: Results from voting, over 14 randomized
message orderings.

Figure 4: Results showing incremental F-measure
on 14 randomized orderings.

to the three base learners, over 14 different randomized mes-
sage orderings. The combined Voting algorithm is able to
match the Threading method’s accuracy, increasing the re-
call to nearly the level of SimSubset, and having a precision
somewhat in between SimContent and Threading. Thus
overall, Voting receives the highest F-measure score, indi-
cating that its performance is superior to that of any of the
individual base methods on the email activity classification
problem. Since our methods achieved an accuracy of close
to 95% for the recommendation task, we did not attempt to
create a combined approach for recommendation as well.

One concern is that the performance of a system would
be very high in the early stages, when there is a small num-
ber of activities to predict, and then degrade over time as
the number of activities increases. However, we have found
that despite the difficulty of this problem, our combined ap-
proach manages to achieve a fairly consistent performance
over the course of the dataset. Figure 4 shows the dynamic
behavior of the F-measure for several randomized orderings
as a function of the number of training messages.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we have investigated two different approaches

to the problem of email activity classification, based on the
people involved in an activity and the contents of messages
in the activity. We have shown empirically that the Sim-
Subset and SimContent algorithms perform better on our
dataset than the baseline approach of message threading
and a näıve Bayes classifier, and that a combined model
that votes together the predictions of all three base learners
performs better than any invididual learner alone.

Furthermore, our results demonstrate that email activity
classification is a very difficult problem. For the recommen-
dation task, a näıve Bayes classifier, a standard approach
to classification tasks, is unable to correctly identify the ac-
tivity with 3 guesses half the time. Threading, the most

common approach, correctly recommends the right activity
less than 60% of the time. Such poor performance makes
it difficult to implement the interfaces that we envision. In
contrast, our methods produce an accurate suggestion 94%
of the time. The recognition task proved to be even more
challenging since the activity related messages are only a
small fraction of the total messages. Where the best base-
line methods performed with an F-measure of 0.60, our com-
bined method achieved 0.81. In practice, our system can
automatically populate activities with email such that more
than 80% of the relevant messages are automatically iden-
tified. The accuracy of our methods allows for the develop-
ment of a useful and accurate activity management system.

There are many directions for future work. Our first pri-
ority is to evaluate our algorithms on a wider variety of
activity-labelled email to verify that our results generalize
to a variety of users and their activities. We also imagine
many ways of improving the algorithms discussed here. For
example, we plan to investigate the use of more sophisti-
cated metalearning techniques beyond mere voting in order
to improve the performance of the overall system. McCal-
lum et al [14] associates links in a social network graph with
topics, perhaps allowing for richer interaction between our
content and person based methods. We also plan to investi-
gate new base learners, based on features such as temporal
locality of activities, more sophisticated social network anal-
ysis, and the use of text analytics to extract better features
from message content.

In the more general sense, this work is just a first step
towards a broader vision of activity-based computing. Our
ultimate goal is to infer the structure and characteristics of
those activities from the messages (and other artifacts) that
make up the activity, in order to provide people tools to
manage their activities more effectively.

Acknowledgements
The authors would like to thank Rie Ando, Daniel Avra-
hami, Catalina Danis, Daniel Egnor, Stephen Farrell, and
Wendy Kellogg for insightful discussions about this work.
Dredze is supported by a NDSEG fellowship.

9. REFERENCES
[1] Manu Aery and Sharma Chakravarthy. eMailSift:

mining-based approaches to email classification. In SIGIR
’04: Proc. of the 27th annual intl. ACM SIGIR conf. on
information retrieval, pages 580–581. ACM Press, 2004.

[2] Rie Kubota Ando and Lillian Lee. Iterative residual
rescaling. In SIGIR ’01: Proc. of the 24th annual intl.
ACM SIGIR conf. on information retrieval, pages 154–162.
ACM Press, 2001.

[3] V. Bellotti, N. Ducheneaut, M. Howard, and I. Smith.
Taking email to task: the design and evaluation of a task
management centered email tool. In CHI ’03: Proc. of the
SIGCHI conf. on Human factors in computing systems,
pages 345–352. ACM Press, 2003.

[4] W. Cohen, V. Carvalho, and T. Mitchell. Learning to
classify email into ”speech acts”. In Proc. Conf. Empirical
Methods in Natural Language Processing, 2004.

[5] Alex Cozzi, Tom Moran, and Clemens Drews. The shared
checklist: Reorganizing the user experience around unified
activities. In 10th Intl Conf on Human-Computer
Interaction (INTERACT 2005), Sept. 2005.

[6] S. Deerwester, S. T. Dumais, T. K. Landauer, G. W.
Furnas, and R. A. Harshman. Indexing by latent semantic

analysis. Journal of the Society for Information Science,
41(6):391–407, 1990.

[7] A. N. Dragunov, T. G. Dietterich, K. Johnsrude,
M. McLaughlin, L. Li, and J. L. Herlocker. TaskTracer: a
desktop environment to support multi-tasking knowledge
workers. In IUI ’05: Proc. of 10th intl. conf. on Intelligent
User Interfaces, pages 75–82. ACM Press, 2005.

[8] N. Ducheneaut and V. Bellotti. E-mail as habitat: an
exploration of embedded personal information
management. interactions, 8(5):30–38, 2001.

[9] Y. Huang, D. Govindaraju, T. Mitchell, V. Rocha
de Carvalho, and W. Cohen. Inferring ongoing activities of
workstation users by clustering email. In Proc. of the 1st
Conf. on Email and Anti-Spam, July 2004.

[10] R. Khoussainov and N. Kushmerick. Email task
management: An iterative relational learning approach. In
Proc. Conf. Email and Anti-Spam, 2005.

[11] S. Kiritchenko, S. Matwin, and S. Abu-Hakima. Email
classification with temporal features. In Proceedings of
Intelligent Information Systems, New Trends in Intelligent
Information Processing and Web Mining (IIPWM) 2004,
pages 523–534. Springer Verlag, 2004.

[12] Svetlana Kiritchenko and Stan Matwin. Email classification
with co-training. In CASCON ’01: Proceedings of the 2001
conference of the Centre for Advanced Studies on
Collaborative research, pages 192–201. IBM Press, 2001.

[13] N. Kushmerick and T. Lau. Automated email activity
management: an unsupervised learning approach. In IUI
’05: Proc. of the 10th intl. conf. on Intelligent User
Interfaces, pages 67–74. ACM Press, 2005.

[14] Andrew McCallum, Andres Corrada-Emmanuel, and
Xuerui Wang. Topic and Role Discovery in Social
Networks. In Proceedings of the Nineteenth International
Joint Conference on Artificial Intelligence, July 2005.

[15] Luke McDowell, Oren Etzioni, Alon Halevy, and Henry
Levy. Semantic email. In WWW ’04: Proceedings of the
13th international conference on World Wide Web, pages
244–254. ACM Press, 2004.

[16] Thomas P. Moran, Alex Cozzi, and Stephen P. Farrell.
Unified Activity Management: Supporting People in
eBusiness. Communications of the ACM, 2005. To appear.

[17] M. J. Muller, W. Geyer, B. Brownholtz, E. Wilcox, and
D. R. Millen. One-hundred days in an activity-centric
collaboration environment based on shared objects. In CHI
’04: Proc. of the SIGCHI conference on Human factors in
computing systems, pages 375–382. ACM Press, 2004.

[18] M.F. Porter. An algorithm for suffix stripping. Program,
14(3):130–137, 1980.

[19] Mehran Sahami, Susan Dumais, David Heckerman, and
Eric Horvitz. A bayesian approach to filtering junk E-mail.
In Learning for Text Categorization: Papers from the 1998
Workshop, Madison, Wisconsin, 1998. AAAI Technical
Report WS-98-05.

[20] R. Segal, J. Crawford, J. Kephart, and B. Leiba.
SpamGuru: An Enterprise Anti-Spam Filtering System. In
Proceedings of the First Conference on Email and
Anti-Spam, July 2004.

[21] R. Segal and J. Kephart. Incremental Learning in SwiftFile.
In ICML ’00: Proc. of the 17th Intl. Conf. on Machine
Learning, pages 863–870, San Francisco, CA, 2000.

[22] A. Surendran, J. Platt, and E. Renshaw. Automatic
discovery of personal topics to organize email. In Proc. of
the 2nd Conf. on Email and Anti-Spam, July 2005.

[23] Steve Whittaker and Candace Sidner. Email overload:
exploring personal information management of email. In
CHI ’96: Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 276–283, New York,
NY, USA, 1996. ACM Press.

[24] Ian H. Witten and Eibe Frank. Data Mining: Practical
machine learning tools and techniques, 2nd ed. Morgan
Kaufmann, 2005.

