
Model reductions for inference: generality of
pairwise, binary, and planar factor graphs

Frederik Eaton
frederik@ofb.net

Zoubin Ghahramani
zoubin@eng.cam.ac.uk

September 14, 2011

Keywords: Approximate inference, Machine learning, Graphical mod-
els, Boolean satisfiability, Maximum a posteriori, Computational complexity

Abstract

We offer a solution to the problem of efficiently translating algo-
rithms between different types of discrete statistical model. We in-
vestigate the expressive power of three classes of model - those with
binary variables, with pairwise factors, and with planar topology - as
well as their four intersections. We formalize a notion of “simple re-
duction” for the problem of inferring marginal probabilities, and con-
sider whether it is possible to “simply reduce” marginal inference from
general discrete factor graphs to factor graphs in each of these seven
subclasses. We characterize the reducibility of each class, showing in
particular that the class of binary pairwise factor graphs is only able
to simply reduce positive models. We also exhibit a continuous “spec-
tral reduction” based on polynomial interpolation which overcomes
this limitation. Experiments assess the performance of standard ap-
proximate inference algorithms on the outputs of our reductions.

1 Introduction

Many researchers hold that intelligent systems, like humans, should be able
to express and manipulate uncertain beliefs. Under this premise, the prob-
lem of formal reasoning becomes one of analyzing or performing “inference”

1

in a statistical model. How should such a model be represented? We can
try to inform the choice between alternative model structures by studying
transformations or “reductions” between them. In computer science, efficient
reductions are a standard tool for measuring the difficulty and expressivity
of reasoning frameworks. In this paper, we present a treatment of reduc-
tions which is oriented primarily towards the fields of machine learning and
computational statistics.

We are interested in the problem of calculating the marginal probabilities
of variables in a statistical model. Although this problem is perhaps the most
basic and common form of “statistical inference” or “probabilistic inference”,
for better clarity we shall refer to it here as “marginal inference” (MI). For
the purpose of MI and other statistical inference problems, statistical models
are often specified using a structure called a factor graph (see section 2.3).
Factor graphs are a simple yet flexible mechanism for defining probabilistic
models. They generalize richer procedural representations such as causal
networks and acyclic directed mixed graphs, as well as physical models such
as the Ising model. We only consider factor graphs with variables having
finite domain, also called “discrete”, since our notion of reduction does not
accommodate infinite models.

Sometimes results in marginal inference are formulated on restricted classes
of discrete factor graphs (section 2.2). These specialized factor graphs may
be defined as subclasses of general factor graphs by constraining aspects of
the model variables or connectivity. Model classes which can defined in this
way include: models having only binary variables, or only pairwise factors,
or whose graphical structure is topologically planar.

In this paper we study the reduction properties of these classes of factor
graph models with respect to the MI task: we say that MI on a particular
class of discrete factor graphs can be reduced to MI on another class if a
solution to the second problem can be easily used to solve the first, in a
sense which is made precise in section 3.1. Although the feasibility of solving
problems such as maximum a posteriori (MAP) and Boolean satisfiability
(SAT) on general inputs by reduction to analogous members of these three
classes is fairly well understood, apparently the corresponding results for
marginal inference are not widely known.

We formalize a notion of reduction called “simple reduction” which is
not only efficient, but also able to express all reductions in common use in
machine learning applications of inference. We show that all three of the
above classes, and their four intersections, are able to “simply reduce” MI on

2

general discrete factor graphs. Sometimes, however, this simple reduction is
only possible in a circumscribed sense. More specifically, we show that binary
pairwise factor graphs are not able to simply reduce models containing states
with zero probability. We also describe a more involved “spectral reduction”,
based on an idea from Valiant (1979b), which is continuous and polynomial-
time, and which is able to avoid this limitation. We hope that our results
will help to clarify the relative usefulness of existing and future algorithms
defined on these model classes.

The following section provides some necessary background. We open by
reviewing the known facts on reductions in SAT, MAP, and MI in section
2.1. Then in section 2.2 we discuss some of the existing algorithms and
decompositions for marginal inference, which have been defined on various
subclasses of factor graphs. In section 2.3, we review the definition of factor
graphs and marginal inference.

Our main theoretical contributions appear in section 3. This opens with
our definition of MI simple reducibility (section 3.1), which is motivated by
the traditional notion of polynomial-time reducibility, and which forms the
basis for the rest of the section. The results are presented in sections 3.2 to
3.5 and summarized in section 3.7.

Finally, in section 4, we present numerical experiments which are intended
to give a sense of the performance of existing marginal inference algorithms
on models produced by our reductions.

2 Fundamentals

Readers who are unfamiliar with basic statistical inference terminology may
wish to review section 2.3 before continuing.

2.1 Theory of Reductions

An important body of computer science research investigates the subject of
equivalences between problems in various complexity classes. This is done
by establishing, between pairs of problems, transformations or “reductions”,
which must be in some sense more efficient than the problems themselves. In
this section we give a broad overview of the theory of reductions, contrasting
reductions in three computational frameworks. The first consists of NP de-
cision problems like SAT, which we shall call the “satisfaction framework”.

3

Next we consider the “optimization framework”, through the Maximum a
Posteriori (MAP) problem which arises in computational statistics and has
applications in computer vision. Finally we discuss existing concepts of re-
duction in the “inference framework”, whose canonical task we have referred
to as “marginal inference” or MI.

Satisfaction framework We can define the satisfaction framework as con-
sisting of problems in NP, which is the class of decision problems1 whose
positive inputs have “correctness proofs” the size of which is bounded by
a polynomial in the size of the input. A standard definition of reducibility
exists for problems in NP: we say that a problem A is “polynomial-time Tur-
ing reducible” (or just “reducible”) to a problem B if, given an oracle (an
idealized subroutine) which solves problem B in constant time, we can solve
problem A in a time which is bounded by a polynomial in the size of A.2

A canonical problem in NP is the Boolean satisfiability problem, or SAT,
which is the problem of determining whether a given Boolean formula can be
satisfied by assigning the right values to each of the variables. Given a way of
solving this decision problem, we can straightforwardly obtain a full satisfying
assignment of any satisfiable formula. We do this by iteratively testing the
satisfiability of a sequence of modified formulae, in which additional clauses
have been conjoined to force each variable in turn to take one or the other
of its values. So it is also natural to think of SAT as the problem of finding
such an assignment.3

According to the Cook-Levin theorem, any problem in NP can be trans-
formed, or “reduced”, to SAT (Cook, 1971). SAT and other problems which
share this property are said to be “NP-complete”. There is a significant
amount of research whose object is to identify and classify the many impor-
tant NP-complete problems which arise in computer science.

The term “universal”, although not standard in this context, informally
describes problems which are able to reduce more general classes in their

1“Decision problem” refers to a problem formulation with a “yes” or “no” answer.
2Under the alternate “polynomial-time many-one” reducibility, the program must

transform an instance of problem A into a single instance of problem B, again in polyno-
mial time, and the result of solving the B instance must be correct for A. It is an open
question whether the two definitions yield different notions of NP-completeness.

3Note that SAT is distinct from UNSAT, the problem of proving a formula unsatisfiable,
which is co-NP-complete; so the two (“yes” or “no”) outcomes of a decision problem are
not symmetrical in the satisfaction framework.

4

frameworks, by analogy to the universality of Turing machines. In this sense,
NP-complete problems like SAT are universal for the satisfaction framework.
The term “universal” could also be applied to “NP-hard” problems, those
problems that are able to reduce NP but are not themselves in NP (either
because they are more difficult or because they are not phrased as decision
problems).

A Boolean formula is constructed by applying the connectives ∧ (“and”,
or “conjunction”) and ∨ (“or”, or “disjunction”) as well as the unary operator
¬ (“not”, or “negation”) to an arbitrary set of binary-valued variables in
any order. Boolean formulae can be transformed into a number of “normal
forms”, possibly by adding extra variables, which preserve the satisfying
assignments of the original variables and thus can be used to solve the original
problem. For example, any satisfying assignment of

a ∨ b ∨ c ∨ d (1)

can be extended to a satisfying assignment of

(a ∨ b ∨ x) ∧ (¬x ∨ c ∨ d) (2)

by choosing an appropriate value for x; and any satisfying assignment of the
second formula also satisfies the first. This idea can be generalized to show
that any Boolean satisfiability problem may be reduced in polynomial time
into the problem of solving a formula in k-CNF (conjunctive normal form).
These formulae look like a conjunction of disjunctive clauses:

∧
c

(
(
∨
i∈c+

vi) ∨ (
∨
i∈c−
¬vi)

)
(3)

where c ranges over a set of disjoint “clauses” c ≡ c+ ∪ c−, each of size
|c| ≤ k. This is a standard result which holds when k ≥ 3 (otherwise we
cannot fit enough auxiliary variables in our clauses). The problem of finding
a satisfying assignment for a formula in k-CNF is called k-SAT. In other
words SAT is reducible to k-SAT (making the latter NP-complete) for k ≥ 3.
On the other hand, 2-SAT is in P, a fact which we will use in section 3.4.

There is a straightforward analogy between k-CNF formulae, and factor
graphs with binary variables and k-ary factors. By introducing a factor for
each k-CNF clause, and specifying that it take the value 1 when that clause
is satisfied and 0 otherwise, we can get a distribution which partitions all of

5

its probability equally among each of the formula’s satisfying assignments.
This transformation can be used to reduce SAT to the problem of marginal
inference (MI), implying that MI is NP-hard (provided that some weak guar-
antees are made about the accuracy of the output marginals) (Cooper, 1990).
The counterpart of binary-pairwise factor graphs under this correspondence
is formulae in the class 2-CNF which, as mentioned earlier, are not able to
reduce general SAT instances.

Relaxing the “pairwise” (k = 2) condition, we can alternatively consider
Boolean formulae which are in some sense planar. Planarity in this context
is defined as the property of being able to embed in a plane the bipartite
graph relating clauses and variables. It turns out that SAT can be reduced
to “planar 3-SAT”, or in other words the latter is NP-complete (Lichtenstein,
1982).

Although SAT is defined in terms of binary variables, we can also imagine
generalized “n-ary” constraint problems involving larger variable domains.
These are instances of Constraint Satisfaction Problems (CSP) (Schaefer,
1978), which are reducible to SAT by introducing a Boolean indicator variable
for each variable-value pair in the input. In CSP with arbitrary constraints,
the corresponding pairwise and planar pairwise classes become universal (by
analogy to Theorems 4 and 16). Thus we can say that in the satisfaction
framework, only the “binary pairwise” class and its subclasses are not fully
general.

Optimization framework This framework consists of problems where
variables must be adjusted, not to satisfy a set of constraints as in SAT, but
to maximize or minimize an objective function. The Maximum a Posteriori
problem (MAP) is a standard optimization problem with roots in statistics,
whose goal can be stated as finding the state with maximum probability in a
statistical model (which can be defined by a factor graph). MAP with binary
variables is equivalent to weighted k-SAT, in which weights are assigned to
each clause and the goal is to find a variable assignment where the sum of
weights of satisfied clauses is maximized. Thus, it is NP-hard.

For our purposes we can use a notion of reduction for optimization prob-
lems, based on oracles, that is a straightforward adaptation of reduction from
the satisfaction framework. It is known that MAP may be reduced to the
maximum weight independent set problem (MWIS) (Sanghavi et al., 2009),
in which weights are assigned to the vertices of a graph and the goal is to

6

find a set of vertices of maximum weight subject to the constraint that no
two of these vertices are connected by an edge. MWIS can in turn be easily
reduced to MAP on a binary-pairwise graph (ibid.). Thus, binary pairwise
graphs are universal in MAP. This is also known as the statement that op-
timization of pseudo-Boolean functions can be reduced to optimization of
quadratic pseudo-Boolean functions (Rosenberg, 1975; Boros and Hammer,
2002). The outputs of some of these reductions are apparently difficult to op-
timize using standard algorithms, and additional work examines the problem
of finding reductions to objective functions with properties such as submod-
ularity (Ishikawa, 2009) that facilitate optimization.

Barahona (1982) shows that MAP on planar binary pairwise graphs is
NP-hard by reducing to it the NP-complete planar maximum independent
set problem4 (Garey and Johnson, 1979). This does not in itself imply the
existence of a reduction to binary pairwise planar MAP within the optimiza-
tion framework, but it is easy to construct one, as we outline after the proof
of Theorem 22.

It is possible to use inference algorithms to solve MAP problems, just as
with SAT problems. However, we are only aware of a “limiting” reduction in
this case. It works by introducing a “temperature” variable T and creating
a distribution that puts all of its mass on the most likely state in the limit
T → 0. In other words, if f(x) is to be maximized, we can make guesses
about the optimal value of x by calculating the marginals of the “Boltzmann
distribution” (or “Gibbs measure”) P (x) ≡ 1

Z(T)
exp 1

T
f(x), where Z(T) is a

normalizing constant, for smaller and smaller values of T .
A SAT instance can likewise be solved using a MAP solver if it is first

expressed as an optimization problem, in which (for instance) the goal may
be to find a variable assignment maximizing the number of satisfied clauses,
as in weighted k-SAT mentioned earlier.

Inference framework The computational problem of inferring marginal
probabilities or, equivalently, of calculating the partition function of a sta-
tistical model (see section 2.3) has its origin in two distinct field of research.
In the first, statistical physics, the inference problem arises in the study of
the equilibrium states of physical systems, such as the Ising spin glass model

4Here the maximum independent set optimization problem is considered as a decision
problem, where the “decision” is whether or not the objective function can be bounded
by a given value.

7

of a ferromagnetic solid. The models arising in physical application domains
are typically characterized by a repetitive, symmetrical structure. Although
such symmetry is absent from many of the models arising in machine learning
applications, most of the inference algorithms which are applied to machine
learning today have their origin in statistical physics. This includes Gibbs
and other sampling methods, as well as variational approximations such as
mean field and the Bethe-Peierls approximation which is related to Belief
Propagation.

The second field is theoretical computer science, which is largely con-
cerned with establishing equivalences between classes of computational prob-
lems using tractable reductions. In the same way that reductions within the
class NP are used to relate problems in the satisfiability framework, theoret-
ical computer science approaches the inference framework through counting
problems which are represented by the class #P, pronounced “sharp-P”. The
class #P is defined as the set of functions whose integer-valued outputs can
be expressed as the number of accepting branches of a non-deterministic
Turing machine running in polynomial time. This class was defined in its
present form by Valiant (1979a), who showed that the problem of computing
the permanent of an integer matrix is #P-complete5 by reducing it to #SAT.
Using reductions to PERMANENT he also proved the #P-completeness of
a number of other problems, including #2-SAT (Valiant, 1979b). (This is
considered a surprising result given that the corresponding decision problem
2-SAT is in P.)

In a “parsimonious reduction” (Papadimitriou, 1994), only a single oracle
call is needed, and the output of the reduction is just the output of the oracle.
This is the #P analogue of polynomial-time many-one reductions. Unlike the
situation for NP-complete, it is not the case that parsimonious reductions
might yield an equivalent definition of #P-complete. Some #P reductions
are parsimonious, but many aren’t. For example, the reduction of #SAT to
#2-SAT is not parsimonious.

The #SAT class and its subclasses #k-SAT, which count the number
of satisfying assignments of Boolean formulae in conjunctive normal form,
are equivalent to computing the partition function of binary factor graphs
with all potential entries equal to 0 or 1. Factor graphs with larger integer

5The class #P-complete is defined to include problems y ∈#P such that any problem in
#P can be solved in polynomial time using an integer-output TM with an oracle for y, or
equivalently, #P⊆FPy (FP being the class of functions computed by a TM in polynomial
time).

8

entries can be easily represented as counting the number of solutions of a
constraint problem with, for example, extra variables whose range of allowed
values is constructed to have a size equal to each of the desired potential
entries. Factor graphs with rational entries can be modeled by dividing an
integer valued factor graph by a polynomial-time computable denominator,
i.e. Z = Z̃/K. The class of such rational-valued computational problems is
named #PQ by Goldberg and Jerrum (2008). The focus of recent work in this
area is on the problem of classifying the complexity of #CSP classes, which
correspond to the partition function problem for factor graphs whose poten-
tials are not freely chosen but come from a predefined “constraint language”
characterizing the problem class. Restricting potentials to a constraint lan-
guage usually results in “dichotomy theorems” as first obtained by Schaefer
(1978), see Dyer et al. (2009); Bulatov and Grohe (2005). The theoretical
computer science approach to inference also includes more complex results
such as the “holographic reduction” of Valiant (2008) which for example al-
lows us to prove that the problem of counting the number of solutions of
monotone planar 3CNF formula in which each variable occurs twice is easy
if the answer need only be known modulo 7, although the same problem is
hard if it must be calculated modulo 2 (Valiant, 2006).

These results make use of chains of reductions, often obtained through a
creative use of integer arithmetic. Many of them are not obviously relevant
to machine learning applications of inference. As an example, a number of
#CSP results must employ reductions which implement variable conditioning
in #CSP problems whose constraint language might lack delta functions.
Such a reduction appears in Dyer et al. (2009): when generalized to real
numbers, it is not continuous; and it multiplies the complexity of inference
by at least the factorial of the size of the variable domain. It is hard to see
how this could be useful in practical machine learning algorithms, for which
variable conditioning is generally implemented as a trivial operation.

In spite of these differences of approach, we were able to fruitfully adapt
what has become a standard technique from theoretical computer science,
based on polynomial interpolation, which first appeared in (Valiant, 1979b).
We use it to construct a reduction which is both continuous and not overly
expensive (see section 3.6), for a case where our more intuitive “simple re-
duction” fails to apply.

We do not dismiss the possibility that the many other ideas from the-
oretical computer science research on counting problems may one day have
important applications to statistical inference problems in machine learning

9

or statistical physics. The focus of this paper, however, is on reductions with
straightforward, potentially immediate applications to these domains. We
consider the task of marginal inference (MI) which we define as the problem
of computing probabilities in a statistical model. This is roughly interchange-
able with computing the partition function, but slightly more natural. We
are interested in reductions that are continuous and, perhaps, statistically
meaningful. Although we demand polynomial time complexity, we are ac-
tually interested in other measures of efficiency as well. We formalize a
notion of reduction which has appeared in the machine learning and statis-
tical physics literature in various specialized incarnations. These include the
pairwise reduction and variable clustering reductions, such as used in the
Cluster Variational Method and the Junction Tree algorithm. The details
of our reduction concept, which we call “simple reduction”, are presented in
section 3.

Discussion Let us contrast the three problems, SAT, MAP, and MI. One
point of difference is in the role of auxiliary variables in reductions. In MI an
auxiliary variable is introduced in such a way that the desired distribution
is obtained from “marginalizing out” the new variable. Thus, the values of
the distribution at each setting of the auxiliary variable must add up to ex-
actly the correct quantity. In MAP, on the other hand, only one value of an
auxiliary variable typically plays a role in the “solution” state, although the
reduction must presumably be constructed so that the variable can switch
values as appropriate to preserve the original optimization landscape. For
example, given binary variables taking values in {0, 1}, we can use an aux-
iliary variable to turn a degree-three term into four terms of degree one or
two:

max
y

(f(y) + y1y2y3) = max
y,z

(f(y)− 2z + y1z + y2z + y3z) (4)

In the new maximization problem, the auxiliary variable z is usually forced
to take a single value, although if exactly two of the yi’s are 1 then z can take
either value. In SAT, similar situations occur: many satisfying assignments in
the input formula appear in the transformed formula with auxiliary variables
forced to take only one value, but situations where both values are allowed
may also occur. Consider the previous example (equation 2): assignments in
which both a∨ b and c∨ d are true are “duplicated” in the new model, with
one copy for each possible value of x.

10

Another way of viewing the distinction between the satisfaction, opti-
mization, and inference frameworks, is in terms of solution verification. For
a SAT instance, it is simple to check that an assignment is indeed satisfying
- and given such an assignment, we can immediately conclude that a formula
is satisfiable (although proving that a formula is not satisfiable can be more
difficult). For MAP, given a state of the model, there is no easy way in
general to tell whether that state is an optimum. However, given two states,
we can say which one is “better” by calculating and comparing the objective
function - the unnormalized joint probability - at each state. Thus, in MAP
there is an easily obtained total ordering of possible solutions in which the
“true” solution is maximal. For MI, given two sets of univariate marginals,
there is apparently no easy way to tell which one is better. But if we are
given two approximate MI algorithms, each of which can be queried for condi-
tioned marginals, then we may create a “score” as described in Eaton (2011)
which provides an indicator of the better approximation. Although such a
score is deterministic and is guaranteed to favor exact inference, the order-
ing it induces on approximations may contain cycles. This complication is
absent from the simpler MAP setting. Thus we see that solution verification
becomes progressively more difficult in the satisfaction, optimization, and
inference frameworks, respectively.

We have described how each of the three computational frameworks is
able, to a certain extent, to express problems in the preceding frameworks.
We might imagine that successively more powerful algorithms can be built
upon each of the frameworks in turn. This hypothesis has some rough em-
pirical support. For instance, state of the art algorithms for satisfaction
are based on techniques from optimization (such as GSAT or WalkSAT, see
Selman et al. (1992)) and, more recently, from inference (such as Survey
Propagation, see Braunstein et al. (2005)).

2.2 Marginal inference on specialized graphs

When defining new marginal inference algorithms, it is sometimes useful or
necessary to impose restrictions such as “binary” or “pairwise” or “planar”
on aspects of the input models. Recall that our goal is to simplify the choice
and interpretation of such restrictions by characterizing the ways in which
general models may be transformed into each of these classes. Here we give a
review of some of the more prominent occurrences of restricted model classes
in the literature on marginal inference.

11

The first published example of what is now called Belief Propagation
(BP), presented by Gallager (Gallager, 1962), was defined on binary factor
graphs (i.e. graphs where all variables are binary) with parity-check factors.
The BP formulation of Pearl (Pearl, 1982) originally used tree-structured
causal (Bayesian) networks, and later loopy causal networks (Pearl, 1988).
However, BP is easily generalized to arbitrary factor graphs (Kschischang
et al., 2001).

The BP algorithm is sometimes specified on pairwise factor graphs, for
pedagogical reasons (Yedidia et al., 2001b) or for suitability to a parent
algorithm (Wainwright et al., 2002). It is straightforward to reduce general
factor graphs to pairwise form (Theorem 4) and BP is actually invariant
under such reductions.

Algorithms and results for binary graphs often assume pairwise connec-
tivity as well. An exception is the loop decomposition of Chertkov and
Chernyak (2006) which is defined on binary n-wise6 factor graphs. This de-
composition has been used to lower-bound the partition function of a binary
pairwise factor graph (BPFG) with “attractive” (i.e. ferromagnetic7) poten-
tials (Sudderth et al., 2008). Related theoretical results are often defined on
BPFGs (Watanabe and Fukumizu, 2011). The algorithm of Montanari and
Rizzo (2005) was defined on BPFGs but is easily generalized (Mooij et al.,
2007).

MI algorithms specific to BPFGs include Belief Optimization (Welling
and Teh, 2001) and the self-avoiding-walk (SAW) tree expansion of Weitz
(2006) (applied to inference by Jung and Shah, 2006). The SAW-tree ex-
pansion has been the subject of interest. Although the expansion has been
applied to graphs with n-ary variables or n-wise factors (Ihler, 2007; Nair and
Tetali, 2007), no one has been able to generalize the original construction to
provide exact marginals in non-BPFGs while preserving the tree structure.
Producing such a generalization or proving its impossibility is an open prob-
lem.

As for planar BPFGs, we know of two important results for MI on this
class. The first is Globerson and Jaakkola’s algorithm for upper-bounding
Z and calculating marginals (Globerson and Jaakkola, 2007), based on the

6i.e., containing factors of arbitrary size
7Sudderth and Wainwright define a binary pairwise model to be “attractive” if for every

edge potential, the relation ψij(0, 0)ψij(1, 1) ≥ ψij(0, 1)ψij(1, 0) holds. This is equivalent
to “ferromagnetic interactions” Jij ≥ 0 in the traditional Ising model. In the optimization
framework, such models are referred to as having a “submodular energy function”.

12

Fisher-Kasteleyn-Temperley (FKT) algorithm of statistical physics (Fisher,
1966; Kasteleyn, 1963). The second result (Chertkov et al., 2008) shows how
to perform approximate inference by summing a truncated loop series on
planar graphs, using the related Pfaffian formula of Kasteleyn (Kasteleyn,
1961). The papers of Fisher and Kastelyn treat models satisfying the addi-
tional constraint of pure interactions. Such models assign equal probability
to a state and its complement. This property is equivalent to containing
only “soft-XOR” pairwise factors, and no unary factors. The class of models
with this property is quite restrictive, and is not even closed under variable
conditioning. Barahona (1982) also showed that inference is tractable in this
special case, traditionally called “spin glasses”. Here we should also men-
tion Valiant’s recent work on holographic reductions (Valiant, 2008), which
although oriented towards integer-valued counting problems, has a special
focus on planar graphs and makes multiple uses of the FKT result.

2.3 Definitions

We define a statistical model to be a probability distribution over some set of
(discrete) random variables: x ∈

∏
i∈V Xi, where V is a set of variable indices

and the Xi are finite sets. This distribution should also be associated with
a structure encoding it in one of various possible ways. Such a structure is
often given as a factor graph, and we will assume this representation in all of
the material that follows. A factor graph is a collection F of factors, each of
which is associated with a set α of variables and a function (its “potential”
or “local function”) from the domains of such variables to the non-negative
real numbers:

ψα : Xα → R+ (5)

where Xα ≡
∏

i∈αXi. These functions are multiplied together and normalized
to induce a distribution over the variables:

P (x) =
1

Z

∏
α∈F

ψα(xα) (6)

The normalization constant Z is also known as the partition function. Factor
potentials may also just be called “factors”.8 We will refer to the class of
general discrete factor graphs as “DFGs”.

8Many authors prefer the terminology of an older and less flexible, but essentially
identical, representation, called a Markov random field (MRF). In an MRF the product in

13

The structure of a factor graph is often illustrated by a diagram with a
circular vertex for every variable and a square vertex for every factor, and
edges connecting variables with the factors that contain them (see e.g. equa-
tion 17). Binary factors may simply be represented as edges (e.g. equation
25).

The problem of marginal inference (MI) (also called probabilistic inference
or Bayesian statistical inference) is to calculate marginals

P (xi) ≡
∑
x\i

P (x) (7)

Here x\i represents the set of all x variables excluding xi, i.e. xV\i. When such
calculation is only approximate, then we sometimes say that “approximate
marginal inference” (or when there is no room for confusion, “approximate
inference”) is being done. When the calculation is exact (to machine pre-
cision) the problem is often called “exact inference”. In this case, or when
the resulting approximation is required to be accurate to within some bound,
then for general factor graphs MI is known to be NP-hard (Cooper, 1990;
Barahona, 1982). In this paper, we are not too concerned with the accuracy
guarantees, if any, of MI algorithms which might be applied to a reduction
or transformation of a factor graph, since in each case the reduction itself is
either exact or can be made arbitrarily precise. We shall refer to both exact
and approximate forms of MI as simply “MI”.

By introducing a factor which is a delta function, we can constrain a vari-
able to take a given value. The resulting distribution is equal to a conditioned
version of the original distribution:

P (x|xi = x∗i) =
1

Z ′
δ(xi, x

∗
i)
∏
α

ψα(xα) (8)

MI in the conditioned model gives conditioned marginals, and these can
be combined with unconditioned marginals to compute the probability of
arbitrarily many variables:

P (x1, x2, x3) = P (x1)P (x2|x1)P (x3|x1, x2) (9)

equation 6 multiplies potential functions whose domains correspond to cliques of a graph,
whereas our function domains are arbitrary sets of variables.

14

In fact, many inference algorithms, for example BP, produce estimates of the
partition function, allowing such “multi-variable marginal” probabilities to
be computed in one step; if r is a set of variables then we have9

P (xr) =
Z ′

Z
≡
∑

x′
∏

i∈r δ(x
′
i, xi)

∏
α ψα(x′α)∑

x

∏
α ψα(xα)

(10)

We shall call an object such as xr, representing an assignment of values
to one or more variables, a partial assignment (PA) and shall consider the
problem of “weighing” or calculating the probability mass of multi-variable
PAs as equivalent to MI. When more clarity is needed, we shall write the
variables and the assigned values of the PA separately, e.g. xr = x∗r, as in
P (xr = x∗r). Where we have a superset r′ ⊇ r and (x∗r′)r = x∗r then we say
the PA {xr′ = x∗r′} is an extension of the PA {xr = x∗r}. Since PAs are a
special kind of “event” in a σ-algebra, we also use terminology from sets, and
speak accordingly of the “union” or “intersection” of PAs. One may check
that PAs are closed under intersection but not union.

Note that we can easily apply optimization problems such as MAP to
a conditioned model using the constraint technique of equation 8. But ap-
plying MAP to a model in which some variables have been summed over or
“marginalized out” is not straightforward. Given an algorithm which com-
putes the most probable assignment of all the variables in the model, there
is no general way to adapt it to compute the most probable assignment of a
subset of the variables, when summing over the others.

The terms “marginal inference” and “partial assignment” are not com-
mon. The rest of our terminology is fairly standard. Factor graphs were
defined in Kschischang et al. (2001). Potential functions (for an MRF) are
called ψ in Castillo et al. (1997). Wiegerinck (2000) first indexed clusters of
variables with Greek letters α, β, γ.

9We can also go in the opposite direction, and compute the partition function from
conditioned marginals. This can be done by making use of the unnormalized joint at an
arbitrary state x, which is easily evaluated: ZP (x) =

∏
α ψα(xα). Then

Z =
ZP (x)

P (x)
=

∏
α ψα(xα)∏

i P (xi|x1...i−1)

15

3 Theory

3.1 Definition of reduction

It is customary in computer science to define equivalence classes of prob-
lems using polynomial-time reductions. These are programs whose running
time is bounded by a polynomial function in the size of the input, which
solve one class of problems using calls to a constant-time oracle solving an-
other class of problems. Polynomials are used because they are closed under
multiplication, addition, and composition, and any of a number of natural
models of computation such as the Turing machine (TM) can simulate each
other with only a polynomial-time overhead (Bernstein and Vazirani, 1997).
Thus it is not necessary to be too specific about the machine on which a
program is said to run in polynomial time. Polynomial-time reductions for
inference have already been discussed on page 8, where we defined #PQ and
#P-complete.

From the standpoint of machine learning applications it makes sense to
demand that reductions should preserve polynomial time complexity. How-
ever, polynomial-time programs could still be very slow, and researchers in
applied fields may understand the idea of transforming one inference prob-
lem into another to imply something more stringent than is understood by
theoreticians. Even though inference is NP-hard, or rather #P-hard, or #PQ
-complete, the difference between a linear-time and quadratic-time reduction
may be important because inference algorithms often depend for their effi-
ciency on specific inputs having a special structure, such as low connection
strength (as explored by Mooij and Kappen (2005b) in the case of BP) or low
connection density (a measure which is used to characterize random k-SAT
problems, Braunstein et al. (2005)), so that their running time on inputs
of interest is sub-exponential. In other words, the size of the input prob-
lem alone is not a good measure of difficulty. Furthermore, the question of
simulating one kind of hardware using another has diminishing relevance in
practice, particularly in the case of minimalist hardware models like the TM,
where working memory is not even random access. Sometimes, hardware
for inference is imagined to be highly parallel, as by analogy to biological
systems, and even model-dependent. In any case, the hardware-invariance of
polynomial-time complexity classes is not as relevant in applied fields.10

10We remark that the complexity class “NC” has been used to describe parallel computa-
tions, and consists of problems which can be solved in polylogarithmic time on a computer

16

We propose a reduction concept called “simple reduction” which is re-
lated to the “parsimonious reduction” from complexity theory (page 8). In
simple reductions, one model is first transformed into another, and then any
number of “queries” can be made on the transformed model. Each query
poses the question “what is the probability (in the original model) of the
partial assignment (PA) xr?” This is answered by transforming xr into a
single PA in the output model, say ys, such that P (xr) = Q(ys). Our reduc-
tion concept has perhaps been assumed implicitly by previous authors, and
is able to accommodate existing reductions such as the pairwise reduction
given in Yedidia et al. (2001b), the d-regular to 3-regular reduction of Fisher
(1966) and, with some modification, variable clustering transformations such
as Junction Tree (Jensen et al., 1990).

Although we stipulate, for the sake of tradition, that the model conversion
phase of the reduction should be polynomial time in the size of the model, in
the reductions presented here the relation between input and output model
size, as well as the time complexity of the conversion, is at most quadratic in
the case of planar outputs, and linear otherwise11. Even with such a minimal
notion of reduction, we are able to reduce positive DFGs to planar binary
pairwise factor graphs.

In terms of existing reductions for #P or #PQ , our “simple reduction”
can be seen as separating the input to a counting problem into two parts,
comprising the model P and the query xr. The weighted counting reduction
concept is based on algorithms which just calculate the partition function of
a model. Such algorithms can then be called a second time after conditioning
some model variables to obtain probabilities. In Figures 1a, 1b, and 1c we
contrast these notions of reduction.

In Figure 1d we depict the “spectral reduction” which is presented in
section 3.6. It requires inference to be done in multiple output models, com-
bining the results in a non-trivial way, and so it is not a “simple reduction”.
However, it is polynomial-time, in fact linear-time, and moreover preserves

with a polynomial number of processors. It is possible that NC could be used to provide a
(polylogarithmic time) reduction which is more appropriate to statistical inference, but we
do not attempt this here. Additional complexity classes for randomized and approximate
polynomial-time computations have also been formally studied, and reductions based on
these classes are relevant to marginal inference, but have the same drawbacks as other
polynomial-time reduction concepts. See Arora and Barak (2009).

11For complexity bounds we assume input models with bounded variable arity and
bounded factor size.

17

Model class A Model class B

model P query xr
G−−−−−→

model Q(1) query y
(1)
s

...

model Q(n) query y
(n)
s

(a) A generic polynomial-time reduction. Multiple oracle calls can be made, and
outputs are combined arbitrarily. “Queries” are not intrinsic to this reduction con-
cept, but may represent conditioned variables in a partition function calculation.

Model class A Model class B

model P query xr
G−−−−−→ model Q query ys

(b) A parsimonious reduction. As in (a), but the output of the reduction is the
unmodified output of the single oracle call.

Model class A Model class B

model P
G−−−−−→ model Q

query xr
F (P,·)−−−−−−−→ query ys

(c) Our two-phase “simple reduction”. As in (b), but Q depends only on P , and
the function F (P, ·) which relates the queries is a valid “PA-map”.

Model class A Model class B

model P
G−−−−−→

model Q(1)

...

model Q(n)

query xr
F (P,·)−−−−−−−→ query ys

(d) A special case of (a), the “spectral reduction” (section 3.6). Multiple models
must be evaluated, as in (a), but queries are still related by a “PA-map” as in (c).

Figure 1: Possible notions of reduction in the inference framework

the possibly desirable property of continuity in the relation between input
and output model parameters. Using this reduction it is possible to remedy
a shortcoming of the simple reduction, which is its inability to reduce models
with zeros to BPFGs.

We now present the formal definition of simple reduction. We divide

18

the reduction into two phases. First the model is transformed (“Model-
conversion”). The model needs to come from an infinite class of models so
that we can talk about demanding a polynomial relationship between input
and output model sizes. Next, one or more queries can be answered by the
transformed model (“Query-conversion”). Only a fixed model is needed into
define the query-conversion step.

Definition 1.

A. Query-conversion We say that marginal inference (MI) in a model P (x)
is “simply reducible” to MI in a model Q(y) if there exists a function F from
PAs in P to PAs in Q such that for any PA xr in P , letting ys = F (xr) we
have

1. Conservation of probability mass: P (xr) = Q(ys)

2. Preservation of containment: Given r′ ⊃ r and xr′ such that (xr′)r =
xr, we have F (xr′) = ys′ where s′ ⊃ s and (ys′)s = ys

3. Efficiency: We should be able to compute F (xr) in time bounded by a
polynomial function of the size of r

We call F the “PA-map” for the reduction.

B. Model-conversion We say that MI in a model class A is “simply re-
ducible” to MI in a model class B if there exists a function G mapping models
P ∈ A to models Q ∈ B and a function F (P, xr) mapping models P to PA-
maps F (P, ·) such that for any P ∈ A

1. F (P, ·) satisfies the above requirements for a PA-map, and can be com-
puted in time bounded by a polynomial function of the size of P . In
other words, P is simply reducible to G(P) and the PA-map for the
reduction can be efficiently computed.

2. The time required to compute G(P) is bounded by a polynomial function
of the size of P

Here we define the “size” of a model P as the number of entries in the
potential functions for the factor graph which specifies P .

19

Part B of definition 1 is a straightforward extension of the model reduction
concept to model classes, preserving the polynomial time constraint. Below
we discuss some consequences of part A, which describes reductions between
models using query-conversions defined by valid PA-maps.

Note that the definition of simple-reduction between two models P and Q
encompasses the common situation where the variables of P are “included” in
Q, but where Q also has extra “latent” variables which need to be “marginal-
ized out”. In this scenario we can see F as a kind of embedding. All of our
reductions can be viewed in this way, except for those which convert from
n-ary variables to binary variables.

The condition A2 that a PA-map F should preserve containment, implies
that we can write the value of F at a multi-variable PA in terms of its values
at single variables: F (xr) =

⋂
i∈r F (xi). Thus, it is enough to define F on

all (variable, value) pairs.
Note that the PA-map F cannot be multi-valued. Reductions are for-

bidden in which a probability P (xr) is calculated from the union of multiple
(disjoint) PAs in Q, i.e. P (xr) = Q(

⋃
i ysi) =

∑
iQ(ysi). The reason for

this is to preserve polynomial time-complexity of the reduction. Due to the
containment-preserving property of F , if we apply F to the intersection of n
PAs in P , each of which maps to a union of two PAs in Q, then the result will
be a union of 2n PAs in Q. But computing this mass will take exponential
time in n.

Generic transformations from DFGs to tree-structured models, like Junc-
tion Tree, cannot be simple reductions because they are exponential in the
model conversion phase. However, the variable clustering idea which is used
in these reductions may be represented as a simple reduction if additional
variables are introduced in the output model corresponding to the variables of
the input model. These should be attached to the “clustered” variables, with
0-1 factors constraining the latter to take the appropriate range of values.
This lets us avoid the need for a multi-valued PA-map.

It may happen that the PA-map F is not invertible: it is not the case,
under our definition, that P is reducible to Q ⇔ Q is reducible to P . For
an example, suppose P (xi) = Q(F (xi)) where F encodes a four-valued x1 in

20

binary:

F (x1 = 0) = {y(1,2) = (0, 0)} (11)

F (x1 = 1) = {y(1,2) = (0, 1)} (12)

F (x1 = 2) = {y(1,2) = (1, 0)} (13)

F (x1 = 3) = {y(1,2) = (1, 1)} (14)

Then Q(y2 = 0) = P (x1 = 0) +P (x1 = 2), which is a relationship we cannot
express through a simple reduction since our PA-maps must, as above, be
single-valued.

It is easy to see that our notion of reduction is transitive: if P simple-
reduces to Q with PA-map F , and Q to R with PA-map G, then P simple-
reduces to R with PA-map G ◦ F .

We finish this section with some definitions which we use in the rest of
the paper for brevity.

Definition 2. A class of factor graphs is universal if the class of general
discrete factor graphs (DFGs) can be simply reduced to it

Definition 3. A class of factor graphs is positive universal if the class of
DFGs with strictly positive parameters (positive DFGs) can be simply reduced
to it

3.2 Pairwise factor graphs

A common restriction imposed on factor graphs is to require all factors to
have size one or two. (Note that size one, or singleton, factors can be seen as
degenerate factors of size 2.) Such graphs are called “pairwise” factor graphs.
It is easy to show that arbitrary (n-wise) factor graphs can be reduced into
pairwise form. A version of the following theorem was outlined in Yedidia
et al. (2001b).

Theorem 4. Pairwise factor graphs are universal

Proof. One way to effect the reduction is to create a variable - i or (α) -
for each variable i and factor α in the old graph, introduce singleton factors
{(α)} for each α and pairwise factors {i, (α)} for each i ∈ α, and assign to

21

these factors the following potentials:

ψ̂{i,(α)}(x̂i, x̂(α)) =

{
1 if x̂i = [x̂(α)]i
0 otherwise

(15)

ψ̂{(α)}(x̂(α)) = ψα([x̂(α)]) (16)

where the new variable domains are X̂i = Xi and X̂(α) = (Xα). In this
notation, α and xα are seen as sets or vectors of values, while (α) and (xα)
are “scalar” encodings of the same quantities. Here [] is used as a kind of
inverse of (), so xα = [x̂(α)] indicates the vector of variable assignments xα
(in the old graph) corresponding to the single variable assignment x̂(α) = (xα)
(in the new graph).

The new pairwise potentials are constructed to enforce consistency be-
tween the representatives of the old variables and copies of them appearing
in representatives of the old factors by assigning zero weight to illegal states,
and the new singleton potentials incorporate the values of the old factors,
with the result that the legal states have the same weight as in the original
graph. The transformation is illustrated in the following diagram:

. . .

..
.

. . .
...

. . .

..
.

. . .

...

iα

. . .

..
.

. . .

...

. . .
..
.

. . .

...

i(α)

{(α)}

{i, (α)}
(17)

The complexity of the reduction is technically O(n4/3), because a 3-ary
factor with variables of large arity d will have size d3 but yields consistency
factors {i, (α)} of size d4. These consistency factors could be encoded more
efficiently due to their regular structure. Furthermore, if the variable arity
is bounded above, then the reduction is O(n) (linear).

It is straightforward to check that, for the above construction, Belief
Propagation (BP) on the reduced pairwise graph is equivalent to BP on the
original graph. By contrast, Mean Field does not carry over.

22

Pairwise graphs of bounded degree As an important special case, we
also address the question of the universality of pairwise graphs with nodes
of bounded degree. The “degree” of a node is defined as the number of
factors containing it. Clearly, the class of pairwise models with all nodes
having degree ≤ 2 cannot be universal, since in such models all variables
must be connected as a single path and will be constrained to satisfy the
conditional independence relationships of such a topology (Pearl, 2000). But
it is straightforward to reduce a pairwise factor graph to an equivalent graph
with all nodes of degree ≤ 3, as also observed previously (Fisher, 1966;
Chertkov et al., 2008). The transformation to be applied to each node of
degree d > 3 is depicted below, for d = 7:

(18)

Edges with a double tic indicate binary factors with “identity” potentials[
1 0

.
.
.

0 1

]
. These edges force the auxiliary variables to all share the same

value. Each node of degree d > 3 is replaced by d − 2 new nodes in this
transformation, and d− 3 new edges are added to the graph. Note that the
arity of the auxiliary variables is the same as those of the input model. Also,
for planar graphs (defined in section 3.5), planarity and even the number
of faces is preserved. This means that in all of our universality results, the
“pairwise” class can also be understood as the class “pairwise, with nodes of
degree ≤ 3”. We will leave this implicit in what follows. To summarize:

Theorem 5. Any pairwise factor graph can be reduced to a pairwise factor
graph with nodes of degree ≤ 3. This reduction can be done in such a way
that maximum variable arity and graph planarity is preserved.

23

3.3 Binary factor graphs

We next consider factor graphs with all variables having domain size 2 (but
factors of arbitrary size). Such graphs are called “binary”. We can easily re-
duce general factor graphs to binary form by introducing an arbitrary binary
encoding for each input variable, and then adjoining factors which reproduce
the values of the original factors on the encoded states. In its simplest incar-
nation, such a reduction would assign zero weight to states in the new graph
which do not correspond to any states in the original, i.e. which are outside
of the image of the encoding function.

However, if we construct our reduction a bit more carefully, we can see
that it is not necessary for the output graph to have any potentials with
entries of zero weight, if such zeroes are not present in the input graph.
Since zeroes in potentials can pose problems for some inference algorithms,
and because we will need to make use of the existence of “positive-preserving”
reductions in Theorem 15, we will now exhibit a binary reduction with this
stronger property.

Definition 6. We will call a reduction positive-preserving if, given any input
graph with strictly positive potentials, the output graph will also have strictly
positive potentials.

Theorem 7. There is a positive-preserving reduction from general factor
graphs to binary factor graphs.

Proof. This construction is more intuitive than it may appear. The idea is
to choose a minimal binary encoding for the values of each variable in the
input model. Each state in the output model must map back to a unique
input state. A construction which simply excludes certain output states
by assigning them probability zero is not possible because of the positivity
requirement. Instead, some input states are associated to multiple output
states, and extra scaling factors are introduced to compensate for the dupli-
cated probability mass. The details follow:

Choose a minimal binary “prefix-free”12 encoding for the values in each
variable’s domain Xi. The encoding will correspond to a binary tree with |Xi|
leaves, where each node has either zero or two children (whence “minimal”).
The encoded values may contain different numbers of bits, since |Xi| might

12A prefix-free encoding is a variable-length encoding in which no codeword forms a
prefix for a longer codeword.

24

not be a power of 2. It is easy to check that such an encoding exists for
any |Xi| ≥ 1. Additionally, to ensure that the reduction is polynomial, in
particular that the size of the output factors is linear in the size of the variable
domains and input factors, let the encoding correspond to a (“balanced”)
binary tree of maximum depth dlog2 |Xi|e, call this number ki. In the new
graph, for each variable i introduce ki binary variables. For each factor α
in the original graph, create a factor in the new graph containing variables⋃
i∈α βi, whose entry at a given (binary) assignment yβi corresponds to the

entry of ψα(xα) in the original graph, where (xα)i is the unique decoding of
the yβi for each i. Note that this factor has 2

∑
i∈αdlog2|Xi|e ≤ 2|α| |Xα| ≤ |Xα|2

entries. Lastly, we need to compensate for the fact that a single variable
assignment xi in the original graph may correspond to multiple assignments
yβi in the new graph, due to the presence of extra unused variables when a
particular xi is encoded with fewer than ki bits. To this end, attach a factor
to yβi with entries equal to 2li(yβi)−ki , where li(yβi) is the actual length of the
encoding of the value xi corresponding to yβi . This ensures that summing
over the unused variables in each encoding gives the correct probability of
an assignment in the original graph.

The complexity of this reduction is O(n2), according to the bound in the
above proof. This is a tight bound because a variable taking 2n + 1 values
must be encoded with n+ 1 variables taking 2n+1 values, and as n→∞ the
ratio becomes two. But if we upper-bound the variable arity and factor size
in the input model, then the complexity is O(n) (linear).

3.4 Binary pairwise factor graphs

The binary restriction is usually combined with the pairwise restriction of sec-
tion 3.2, resulting in “binary pairwise” factor graphs (BPFGs). Several algo-
rithms and decompositions have been proposed which only apply to BPFGs,
so it is interesting to ask if it is possible to reduce more general factor graphs
to the binary pairwise form. Such a reduction might be imagined as first
converting the input to binary form, by choosing an encoding of the input
variables, and then adding latent variables to implement the correct distri-
bution over the new graph. We show that for general input graphs - in
particular, for those which may contain states having zero probability - a
valid simple reduction to BPFGs does not exist.

Our proof depends on a fact about k-SAT. Recall that k-SAT is the

25

problem of finding satisfying assignments to Boolean formulae written in
the format of equation 3, namely as a conjunction of disjunctive clauses
of size k. For such a formula to be satisfied, every clause must be true,
which means that at least one of its positive variables must be true, or at
least one of its negative variables must be false. For k ≥ 3, k-SAT is NP-
complete and in fact we can create a k-SAT instance where a given set of
assignments to some variables, and no other assignments, satisfies the formula
(possibly by introducing extra auxiliary variables). This is not possible with
2-SAT, however, whose satisfying assignments always form a structure called
a “median graph” and can easily be shown to have the following property
(Knuth, 2008, 64-74):

Lemma 8. (Median property) Given a set of three satisfying assignments
to a 2-SAT formula, if we construct a new assignment (the “median” of the
three) in which each of the variables takes the value it took in the majority
of the other assignments, then the new assignment is also satisfying.

Our theorem follows directly from the observation that the positive states
of a binary pairwise factor graph correspond to solutions of 2-SAT.

Theorem 9. Binary pairwise factor graphs are not universal. In particular,
there exist factor graphs which cannot be reduced to binary pairwise form.

Proof. We will assume that the input graph is binary. Call this graph P and
let it as usual be given by

P (x) =
1

Z

∏
α∈F

ψα(xα) (19)

We see that a state x∗ has positive probability if and only if the following
Boolean expression is true: ∧

α∈F

∧
xα∈Xα
ψα(xα)=0

∨
i∈α

xi 6= x∗i (20)

Introduce a Boolean variable vi which is true if x∗i = 1 and false otherwise;
the expression becomes:

∧
α∈F

∧
xα∈Xα
ψα(xα)=0

(
∨
i∈α
xi=0

vi) ∨ (
∨
i∈α
xi=1

¬vi)

 (21)

26

The positive states of P are thus exactly the solutions of a k-SAT instance,
where k is the number of variables in the largest factor in F . Any set of
states can be realized as a solution set of k-SAT when k ≥ 3, but when
k = 2, such sets must obey the median rule defined above. If we can show
that our definition of simple reduction preserves lack of median structure,
then we are done: an arbitrary model P (without median structure) cannot
then be reduced to a binary pairwise model Q (with median structure).

Let F be the PA-map of a representation of P (x) by Q(y), where Q has
median structure. Consider a triple of states x(1), x(2), x(3) in P (i.e. these
are full, not partial, assignments), each with positive probability, and let x∗

be their median. These map under F to a triple of PAs y
(1)
r1 , y

(2)
r2 , y

(3)
r3 in

Q. Since each PA y
(i)
ri has positive probability Q(y

(i)
ri) = P (x(i)), it can be

extended to a full state y(i) with positive probability. The median of these
three states let us call y∗. Since we assumed the median property for Q,
we have Q(y∗) > 0. Now we would like to show that the full state y∗ is an
extension of the PA F (x∗). This follows from the variable intersection rule
for PA maps: F (x) =

⋂
i F (xi). More specifically, let i be a variable in P .

Since x∗i is a median of (x
(1)
i , x

(2)
i , x

(3)
i), it must have the same value of two of

these - say, without loss of generality, x
(1)
i and x

(2)
i . But y

(1)
r1 and y

(2)
r2 will then

both be consistent with F (x∗i) = F (x
(1)
i) = F (x

(2)
i). As a consequence, y∗

will share this consistency: any variable which is fixed in F (x∗i) will appear
in both y(1) and y(2) and hence y∗. Since we have shown y∗ is consistent with
F (x∗i) for all i, it follows that y∗ must be an extension of F (x∗).

Now, Q(y∗) > 0 since we assumed Q to have median structure. But
y∗ ∈ F (x∗) so P (x∗) = Q(F (x∗)) ≥ Q(y∗) > 0. Thus x∗ has positive
probability in P . Hence, P has median structure.

We have proven that our reductions preserve lack of median structure,
from which it follows that MI in a model whose positive states lack median
structure cannot be reduced to MI in a binary pairwise factor graph. We
have indicated that general factor graphs do not have median structure, but
it may help to give a concrete counterexample. The following distribution,
which we call the “XOR distribution”, lacks the median structure and so is
not representable by a binary pairwise graph:

P (s1, s2, s3) =

{
1
4

∏
i si = −1

0 otherwise
(22)

where si ∈ ±1. The median structure demands that “111” has a positive

27

probability, since the following three positive configurations each have a ma-
jority assignment of 1 for each variable:

s1 s2 s3
−1 1 1
1 −1 1
1 1 −1

median: 1 1 1

(23)

But the distribution assigns it a zero probability.

We saw that the XOR distribution of equation 22 cannot be represented
by a binary pairwise factor graph. It is however possible to construct a
sequence of binary pairwise graphs which approaches the XOR distribution
with arbitrary precision. This is because it is possible to implement the
following distribution as a binary-pairwise factor graph, for finite k:

P (s1, s2, s3) ∝ exp

(
k

3∏
i=1

si

)
(24)

The following explicit construction is due to Martijn Leisink (Leisink, 2010).
Introduce an auxiliary variable s4, and create a network:

a

a a

c

c

c

s1

s2 s3

s4

b

b b

d

(25)

with weights shown (corresponding to pairwise and singleton factors exp(as1s4),
exp(bs1), etc.), having values:

b =
k

4 |k|
acosh (e4|k|) (26)

c = − |b| (27)

a =
−k
4 |k|

acosh (e8|b|) (28)

d = |a| (29)

28

The relationships of the weight parameters to k are plotted below:

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-0.4 -0.2 0 0.2 0.4

k

a
b
c
d

(30)

This set of weights is not unique, since although there are four unknown
weights and four unique (up to permutation) values for the state s1:3, the
partition function of the new model is an extra degree of freedom which
has been constrained by the simplifying choice, d = |a|, from which follows
c = − |b| and the other two equations. It is straightforward to verify that the
network induces the distribution P of equation 24 on s1:3 when marginalizing
out s4.

Check that when k is set to ±∞, the distribution becomes unnormalizable
(even if each factor is normalized independently). Thus, the construction only
works for finite k. However, in the limit as k → ±∞, the distribution over
s1:3 approaches the XOR distribution (or its complement).

We will show that using the Leisink construction to implement binary
pairwise soft-XORs of a given strength k, it is possible to construct a binary
pairwise factor graph which approximately reduces any given input graph.
The error of such an approximation can be made arbitrarily small by taking k
to∞. Thus, we can think of binary pairwise factor graphs as universal under
an approximate form of reduction, based on a limit concept. We propose the
term “almost universal” to describe factor graph classes with this property:

Definition 10. A class C of factor graphs is almost universal if DFGs can
be simply reduced to it in a limit.

In other words, given an input graph with model P (x), there is an infinite
sequence of models Q1(y), Q2(y), . . . with the following properties:

1. The Qn are represented by factor graphs in C with the same connectivity
(but presumably varying parameters)

29

2. Given an ε > 0 we can find an N such that for all n > N , Qn(y) simply
reduces some model Pn(x) whose (multi-variable) marginals are within
ε of P (x)

3. As in Definition 1, the size of the graphs implementing the Qn should
be bounded by a polynomial in the size of P .

Note that since we are dealing with finite graphs, the calculation of dis-
tance between marginals can be done according to any norm without affecting
the definition. The limit is taken after fixing an input model - we make no
guarantees about the rate of convergence as a function of input size. Finally,
our notion of factor graph size is based on counting parameters, and a more
refined definition which accounts for the cost of increasing numerical preci-
sion would require some adaptations to the above definition, since the size
of the models Qn would then no longer be constant. We leave this for future
work.

We can now formulate the following theorem:

Theorem 11. Binary pairwise factor graphs are almost universal

There is already theoretical support for a kind of universality in BPFGs.
Valiant (1979b) proved the #P-completeness of #2-SAT, and even monotone

#2-SAT, which corresponds to BPFGs with all potentials

[
0 1
1 1

]
. This im-

plies that a polynomial-time reduction can be made from factor graphs with

rational potentials to BPFGs with

[
0 1
1 1

]
potentials, but this reduction

may be very slow and is not a “simple reduction”. Here we give a limiting
simple reduction.

We proceed to prove Theorem 11.

Proof. Assume, without loss of generality, that the original graph is in pair-
wise form. Now create a new graph with a binary indicator variable k = (i, xi)
for each of the (variable, value) pairs in the old graph, which will be by con-
struction yk = 1 if the variable i takes value xi in the old graph, and yk = 0
otherwise. Introduce an edge (k, l) = ((i, xi), (j, xj)) for each edge (i, j) in the

old graph and each pair of values (xi, xj), with factor potentials ψ̂kl(yk, yl)
equal to 1 if either yk = 0 or yl = 0 and equal to ψij(xi, xj) otherwise.
One can see that this graph has an unnormalized joint which coincides with

30

that of the original graph for each “allowed” state. We still need to ex-
clude states where a variable i takes “multiple values”, i.e. states y for which
y(i,xi) = y(i,x′i) = 1 for some xi 6= x′i; and we need to ensure that at least one
y(i,xi) is 1 for each i.

We try to create a “1-of-n” gadget as follows. For each variable i and
for each pair of values xi 6= x′i, introduce an edge ((i, xi), (i, x

′
i)) with factor

potential equal to zero if both y(i,xi) and y(i,x′i) are 1, and equal to 1 otherwise.
This ensures that no more than one y(i,xi) is 1 for each i. But the remaining
case where y(i,xi) = 0 for all xi is not yet excluded by the new graph. In fact,
it is impossible to exclude it using only binary pairwise factors when n ≥ 3,
since it is a median of the other valid states. We can however exclude it by
introducing a new XOR factor of size |Xi| which ensures that an odd (and
therefore non-zero) number of the y(i,xi) are equal to 1.

The following diagram describes the transformation for the case |Xi| = 4
and |Xj| = 3 (the two XOR factors are marked ⊕):

i j

⊕ ⊕

i
j

(31)

An XOR factor of size n can be constructed by combining n − 2 XOR
factors of size 3 and introducing n− 3 auxiliary variables; a single edge can
be used when n = 2. This resembles equation 34. XOR factors of size 3
can be achieved as a limit of binary pairwise graphs, by letting k → ±∞ in
Leisink’s construction of equation 24.

An alternative method, which creates a limiting reduction directly, is to
give the model’s valid states an extra weight t which is allowed to vary. To do

31

this, attach a singleton factor with potential [1 t] to each output variable:

i j

i
j

(32)

The probability of the all-zero case for each variable then goes to zero as
t→∞.

With either construction, the size of the output graph is at most quadratic
in the size of the input. But if variable arities and factor sizes are bounded,
the relationship is linear.

This also shows

Corollary 12. Binary 3-wise factor graphs are universal

Since the 3-wise to pairwise reduction only breaks down in the presence
of potential functions with some entries equal to zero, we ask whether it
is possible to perform the binary pairwise reduction in a way that avoids
resorting to a limit when graph potentials are all strictly positive.

We have already exhibited a positive-preserving reduction to binary factor
graphs in Theorem 7. If we can show that arbitrary n-wise binary factors
with positive entries can be implemented using only pairwise factors, then we
will have our positive BPFG reduction. We accomplish this in two steps, first
by demonstrating that an n-wise soft-XOR factor of arbitrary finite strength
can be constructed out of n 3-wise soft-XORs, and then by showing how to
combine soft-XOR factors of sizes 1 through n to implement a factor with
arbitrary positive potentials. As with the previous theorem, the construction
is a proof of concept - it is not expected to be “minimal”, except that it
satisfies the polynomial size constraints outlined earlier in Definition 1.

Note that positive universal implies almost universal, for the finite and
continuous reductions we consider in this paper.

32

Proposition 13. The n-wise soft-XOR factor

P (s) ∝ exp

(
k

n∏
i=1

si

)
(33)

(with k finite) can be implemented in binary pairwise form.

Proof. An implementation of the above factor with k ≤ 0 can be represented
by a k ≥ 0 factor by flipping the sign of one of the variables, so assume k ≥ 0.

Consider connecting the n binary variables s1:n with 3-wise soft-XOR
factors, each of strength k′, and n auxiliary variables t1:n in a loop as shown
for n = 5:

⊕ t1

s1

⊕

t2

s2

⊕
t3

s3

⊕
t4

s4

⊕

t5
s5

(34)

We will prove that for any k we can always find a k′ such that the above
graph implements the distribution of equation 33. The probability of a con-
figuration of the s variables is

P ′(s) ∝
∑
t

exp(k′(tns1t1 + t1s2t2 + . . .+ tn−1sntn)) (35)

This summation has 2n terms. Observe that when two states s and s′ have
the same parity, then the terms in the summation over t for P ′(s) are a
permutation of those in the summation over t for P ′(s′). To prove this,
consider flipping a neighboring pair of s variables, say si and si+1. The effect
is the same as flipping ti, which exchanges pairs of terms in the sum, leaving
the total value invariant. But a sequence of such flips can be used to go
between any s and s′ if they have the same parity. In particular, flipping
ti for every i where

∏i
j=1 sj = −1 rearranges the terms to correspond to

33

s = (1, 1, . . . , 1) (if
∏n

j=1 sj = 1) or to s = (−1, 1, . . . , 1) (if
∏n

j=1 sj = −1).
This shows that P ′(s) takes only one of two values:

P ′(s) =

{
p1 :

∏n
j=1 sj = 1

p2 :
∏n

j=1 sj = −1
(36)

for some p1 and p2, which is the same as saying

P ′(s) ∝ exp(k
∏
i

si) (37)

where k = 1
2

log p1
p2

, and hence P ′(s; k′) = P (s; k) for this choice of k.
It remains to verify that the function mapping k′ to k can be inverted. At

least for small n this function appears to be strictly monotonic, but it is not
necessary to prove that fact in general. All that is needed is to observe that
p1
p2

is a ratio of positive continuous functions of k′ (each given respectively by

the right hand side of equation 35 for two different values of s). Thus k is a
continuous function of k′. Also note that k′ = 0 =⇒ p1 = p2 =⇒ k = 0,
and k′ → ∞ =⇒ k → ∞. The second implication can be reached by
considering the values of the network when the 3-wise soft-XORs become
“hard”-XORs. The intermediate value theorem then implies that for any
positive k, we can find a k′ such that the graph of equation 34 is equivalent
to a n-wise soft-XOR of strength k.13

Corollary 14. Any n-wise binary factor with strictly positive entries can be
implemented in binary pairwise form

13The graph of equation 34 shows a particular implementation of an n-wise soft-XOR,
with a cycle topology. Other topologies are possible, and in fact the above proof can be
adapted to show that any network connecting n variables with soft-XORs and auxiliary
nodes is equivalent to an n-wise soft-XOR at a given strength, provided that (1) the factor
graph is connected, (2) each of the n “observed” variables belongs to a single soft-XOR
factor, and (3) each auxiliary variable belongs to exactly 2 soft-XOR factors. For such
networks, the mass assigned to a particular setting of observed and auxiliary variables is
the same as that assigned to the result of flipping two observed variables as well as every
auxiliary variable along an arbitrary path between them. Connectedness ensures that such
a path always exists. Any two observed-variable assignments with the same parity can be
related by a sequence of such double-flips. As in the above proof, this means that summing
over the auxiliary variables gives a probability mass that depends only on the parity of
the observed variables (the terms in each summation being a permutation of those in the
other). The strength and size of the various soft-XOR factors need not even be the same,
for this equivalence to hold.

34

Proof. The 2n functions s 7→ se11 s
e2
2 . . . senn parametrized by a vector e ∈

{0, 1}n form an independent basis for the space of real-valued functions of
s, so we can write the factor’s potential function as exp(

∑
e aes

e1
1 s

e2
2 . . . senn)

for some set of coefficients ae. But such a potential can be implemented by
superimposing 2n soft-XOR factors of strength ae, each covering subsets of
the variables selected by the vector e. If the construction of Proposition 13
is used for these factors, the output size will be O(k log k) where k = 2n is
the number of potential function entries of the original factor.

Together with Theorem 7, this proves:

Theorem 15. Binary pairwise graphs are positive universal

Assuming bounded variable arity and factor size, the reduction from
DFGs is again O(n).

Implications of non-universality In a certain sense, because complexity
classes are defined by reducibility relations, the non-universality of BPFGs
implies that they occupy a different complexity class from general discrete
factor graphs. It is not clear what, if any, implications our result has for
realizable efficiency of inference algorithms on the various model classes. All
eight of our classes are #PQ -complete (implying NP-hardness). Although
these complexity measures are well-understood, if not rigorously proven, to
imply exponential running time in the worst case, they bound computation
time only as a function of problem size (in bits). But (as mentioned in section
3.1) it is common to quantify the difficulty of an inference problem using other
metrics such as those based on parameter magnitude (Mooij and Kappen,
2005a; Ihler, 2007). Even in the satisfaction framework, difficulty metrics
based on connection density play an important role in the classification of
random k-SAT problems (as in Braunstein et al. (2005)). Understanding how
our reductions interact with these or other measures of inference difficulty
might help shed some light on the possibly special status of BPFGs.

3.5 Planar binary pairwise graphs

Finally, we address the problem of reducing an arbitrary factor graph to pla-
nar form. Planar graphs are defined as graphs which can be drawn in a plane
(R2) without any crossing edges. This condition is equivalent to forbidding
K5 and K3,3 graph minors (see “Wagner’s theorem” of Wagner (1937), or

35

“Kuratowski’s theorem” of Kuratowski (1930)). Planar graphs have a num-
ber of special properties. For instance, a closed non-self-intersecting path
splits a planar graph into two components, in analogy to the Jordan curve
theorem. Also, a planar graph has a naturally-defined “dual” which is also
planar. The “planar separator theorem” (Ungar, 1951) may be used to en-
gineer efficient divide-and-conquer algorithms for planar graphs.

It seems useful to consider the possibility of reducing MI on general graphs
to MI on planar graphs, partly because of the existence of a handful of results
which apply to MI on planar graphs, and also because, due to the special
properties of planar graphs, one might anticipate that more of these results
may be derived in the future. If we allow planar graphs to have variables with
arbitrarily large domain, then the reduction task is straightforward. We just
reduce the graph to pairwise form, draw the resulting graph in two dimensions
(with an edge for each factor) and introduce a new variable wherever two
edges cross. The new variable encodes the values at an arbitrarily chosen
endpoint of each of the two original edges:

i

jm

l i

jm

l

(j, l) (38)

In the above notation, the pairwise factor in the right-hand diagram between
the new (j, l) variable and j enforces consistency between xj and x(j,l); simi-
larly for the factor between (j, l) and l (in both cases this is indicated with
a double tic). The domain of x(j,l) is just Xj ×Xl. The new factors between
i and (j, l) and between k and (j, l) are filled with copies of the entries of
ψij and ψkl, respectively, similarly to the factors in the pairwise reduction
theorem (Theorem 4). It is possible to show that the new graph is at most
quadratic in the size of the old. This proves:

Theorem 16. Planar pairwise factor graphs are universal

Since the model size is linear in the number of edges, and four new edges

36

may be introduced for each pair of crossing edges, the complexity of this
reduction is O(n2).

Finding a reduction for the binary pairwise planar case is more difficult
since only two values can be used to propagate data across an intersection.
Inference in binary pairwise planar graphs was shown to be NP-hard by
Barahona (1982) which suggests that there could be a way to reduce ordinary
factor graphs to binary pairwise planar factor graphs. Such a reduction would
be of interest because of the existence of a number of results which apply only
to the planar binary pairwise case, in approximate inference and statistical
physics (section 2.2).

To start with, it is not difficult to effect such a reduction in a limit:

Theorem 17. Planar binary pairwise factor graphs are almost universal

Proof. Reduce the graph to binary pairwise form as described above, and
replace each pair of crossed edges with the following subgraph, using soft-
XOR 3-wise factors of strength m, implemented in binary via the Leisink
construction (page 28).

i

jm

l i

j′

jm

l′

l

⊕

⊕

⊕

⊕

(39)

As previously, edges with a double tic enforce the constraint that their end-
point variables match (i.e. in this case they have potentials

[
1 0
0 1

]
). The

factor connecting i and j′ in the new graph should be the same as ψij in
the old graph, and similarly for k and l′. Crossed edges can be replaced
iteratively, making sure to draw the subgraph of 39 at each step so that any
other edges crossing either kl or ij in the original pass through one of its
outer four edges.

In the limit as m→∞, the soft-XOR factors become XOR factors; then,
note that xl′ is forced to take the value of xl, and xj′ to take the value of xj.

37

The central auxiliary variable simply reflects whether or not xl = xj.
14

The reduction is again quadratic. For completeness we also consider the
universality of planar binary graphs (i.e. relaxing the pairwise constraint).
If we transform the input first to a binary n-wise graph as in Theorem 7,
satisfying the polynomial complexity requirements, then it is easy to use the
edge-uncrossing technique of equation 39 to make the result planar. In this
case the variables i and k in the diagram would represent factors. The XORs
would be “hard” XORs, implemented using 3-wise factors. This proves that

Corollary 18. Planar binary graphs are universal

Recall that although BPFGs could only simply reduce arbitrary DFGs in
a limit, we were able to find a (non-limiting) simple reduction from positive
DFGs to BPFGs (Theorem 15). For the planar case, it was tempting to
conjecture that only a limiting simple reduction exists from positive DFGs
to planar BPFGs. Note that BPFGs with topologies like K5 or K3,3 induce
distributions which, although general from the perspective of conditional
independence, nevertheless enjoy a special structure which is absent from
random distributions over five and six binary variables, respectively. This
structure corresponds to a sub-manifold of the space of distributions. One
might imagine that planar BPFGs would only be able to approximate such
structure in a limit, given that no planar graph can containK5 orK3,3 minors.
However, this is not the case. It is possible to modify the previous theorem
proof to obtain an exact crossover gadget for positive input potentials. Before
describing how to do this, we first prove lemma:

Lemma 19. For k 6= 0, the equations

tanh(a+ b) tanh(a+ c) = tanh k (40)

tanh(a− b) tanh(a− c) = tanh−k (41)

have a solution if and only if |a| > |k|.

Proof. The proposition holds for any odd sigmoid function with range (−1,+1),
not just tanh. If k = 0 then set all other variables to zero. Otherwise, if
a = 0 then both of the left-hand sides are positive, and the equation is not

14Observe that any one of the four soft-XOR factors can be removed, as long as three
remain, without changing the limiting behavior of the subgraph in equation 39.

38

solvable. For the remaining cases, note that we can choose both k and a
positive by making appropriate sign inversions. Consider that as a > 0, at
least one of (a + b, a − b) must be positive, and similarly for (a + c, a − c).
Also, exactly one of these pairs must have opposite signs, since the signs on
the right of equations 40 and 41 are opposite. So assume, without loss of
generality, that a+b > 0, a−b > 0, a+c > 0, and a−c < 0. If |a| ≤ |k| then
either |a+ b| ≤ |k| or |a− b| ≤ |k|, suppose the former. But since |tanh| < 1
and tanh is monotonic, we have a contradiction:

|tanh k| = |tanh(a+ b) tanh(a+ c)| < |tanh(a+ b)| ≤ |tanh k| (42)

Now assume |a| > |k|. From the foregoing considerations, we must have
both a + b > k, and a − b > k. Taking the first equation, we solve for
c = atanh tanh k

tanh(a+b)
− a. Substitute this c into the second equation, and

consider varying b continuously from 0 to k − a. Then b = 0 =⇒

c < 0⇒ tanh(a− b) tanh(a− c) > 0 > tanh−k (43)

while b = k − a =⇒

c =∞⇒ tanh(a− b) tanh(a− c) = − tanh(2a− k) < tanh−k (44)

By the intermediate value theorem, and continuity, there must be a value of
b where the second equation is also solved.

Theorem 20. Planar BPFGs are positive universal

Proof. We first show that it is possible to implement the crossover network
exp(ks1s4 + ks2s3) using four threewise soft-XORs, having strengths a, b,
and c, as shown:

s1

s4s3

s2

k k

s1

s4s3

s2
a

a

b c⊕

⊕

⊕

⊕

(45)

39

Both networks have the following inherent symmetries: (i) invert (s1, s4),
(ii) invert (s2, s3), (iii) flip vertically: s1 ↔ s3, s2 ↔ s4. The network
on the left, of course, has additional symmetries which are not shared by
the soft-XOR gadget on the right for arbitrary values of a, b, and c. (We
were not able to find a more symmetrical planar network implementing the
crossover.) Although there are 16 possible assignments to s1:4, these fall into
three classes under the above symmetries. Call them L = {s1:4 = (1, 1, 1, 1)},
M = {s1:4 = (1, 1, 1,−1)}, and R = {s1:4 = (1,−1, 1,−1)}. Equating the
ratios L/M and R/M for the left and right models, and making use of the
identity

1

2
log

cosh(x+ y)

cosh(x− y)
= atanh (tanhx tanh y) (46)

gives the equations of Lemma 19. These can also be solved analytically for
given a and k. First switch to a “tanh basis”: κ ≡ tanh k, α ≡ tanh a,
β ≡ tanh b, γ ≡ tanh c. Then

β, γ =
κ(1− α4)±

√
(κ(1− α4))2 − 4α2(1− κ2α2)(κ2 − α2)

2α(1− κ2α2)
(47)

The values of β and γ are plotted versus κ for three values of a/k:

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

a/k = 1.5
a/k = 2.0
a/k = 3.0

(48)

Now, to implement the reduction, first convert the input model to positive
binary pairwise form. Write the potentials of the new model in the spin (±1)
basis: ψi(si) = exp(hisi), ψij(si, sj) = exp(kijsisj). Whenever two pairs of
edges, say (i, j), and (l,m), cross, choose k > max(|kij| , |klm|) and subdivide

40

each edge as shown:

i

i′

jm

l

l′

k k

ki′j kl′m

(49)

with new weights ki′j = atanh
tanh kij
tanh k

, and kl′m = atanh tanh klm
tanh k

. Replace
the new pair of crossed edges (i′, j) and (l′,m) with the soft-XOR gadget of
equation 45, implemented in planar BPFG form using Leisink’s construction.

We have exhibited one type of reduction to planar form as a proof of
existence. It is interesting to speculate on the possibility, given a general
factor graph, of finding a minimal representation - either in binary pairwise
planar form, or in one of the other classes - which encodes the same or similar
probabilities, but additionally minimizes some complexity measure such as
number or magnitude of parameters. It should be possible to experiment
with finding minimal representations using entirely numerical methods, but
we have not tried to do so.

3.6 Spectral reductions

We showed that it is not possible to reduce general DFGs (with zeroes) to
BPFGs using the “simple reduction” of Definition 1. Here we show that a
continuous polynomial-time reduction for this case is still possible, using a
polynomial interpolation technique originally introduced by Valiant (1979b)
for his reduction from “perfect matchings” to “imperfect matchings”.

Theorem 21. DFGs are reducible to BFPGs

Proof. Consider the 1-of-n gadget of Theorem 11. In that theorem, the all-
zero case was excluded using two constructions. The first was a limit of
soft-XOR factors. The second attached a [1 t] potential to each variable,

41

and considered the limit as t→∞. Taking a closer look at the second con-
struction, we see that the partition function can be written as a polynomial
in t, call it Z(t). Each 1-of-n gadget, corresponding to a distinct variable in
the original model, contributes a factor of either 1 or t to each non-zero term
of Z(t), according to whether all of its variables are zero (the illegal state),
or whether one variable is one, respectively. For example, the constant term
of Z(t) is the partition function of a model where each 1-of-n gadget is in
the illegal all-zero state; the linear term describes a model where exactly one
gadget has a “one”; etc. The original partition function Z0 appears as the
leading coefficient of this polynomial, which has degree equal to the number
of variables |V| in the original model. Z0 can be recovered, along with all
of the other |V| coefficients, by evaluating the polynomial at |V| + 1 differ-
ent values of t. The relationship between Z0 and the vector of evaluations
(Z(ti), i = 1 . . . |V|+ 1) is of course continuous.

The reduction multiplies the complexity of inference by the number of
model variables. This is unfortunate, but not unheard of: algorithms such
as Linear Response (Welling and Teh, 2004) introduce a similar added com-
plexity over BP and MF.

This proof does not directly imply a universality for planar BPFGs via
the reduction of Theorem 20, which applied only to positive BPFG inputs.
We now give a separate reduction from BPFGs with zeroes to planar BPFGs,
along the same lines as the above.

Theorem 22. DFGs can be reduced to planar BPFGs.

Proof. We adapt the MAP 3-wise to pairwise transformation of equation
4 to create a gadget parametrized by an unknown t such that the leading
coefficient of the resulting partition function is the same as that of a model in
which the gadget is replaced by an XOR. Consider an optimization problem
with binary (0,1) variables, and weights given by the following diagram:

4

4 4

-2

-2

-2

x1

x2 x3

x4

1

1 1

-8

(50)

42

In other words, for fixed x1:3 the objective is:

max
x4
−8x4 + 4x4(x1 +x2 +x3) + (x1 +x2 +x3)− 2(x1x2 +x1x3 +x2x3) (51)

Check that the value of this expression is 1 if an odd number of the x1:3 is
1, and zero otherwise. Now create a factor graph with power-of-t potentials
given by the above weights. For example, connecting x4 and x3 will be the

factor

[
1 1
1 t−2

]
. The leading coefficient of the partition function of a model

containing this gadget will correspond to the partition function of a model
in which the gadget implements an XOR. If l is the number of XORs, the
number of coefficients is ≤ 9l + 1, corresponding to 1+ the range of the
argument of equation 51. So this many evaluations of the partition function
can be made to identify all the coefficients. The XORs can be used as in the
construction of Theorem 17 to uncross all of the crossed edges in a BPFG.

Note that the gadget of equation 50 can be used to show that binary
pairwise planar MAP is universal in the optimization framework, with a con-
struction similar to that of Theorem 17. The weights must be scaled so
that the range of values of the gadget is larger than the range of the origi-
nal optimization problem. The spectral reduction method gives, in general,
an interesting connection between inference and integer-valued optimization
problems.

The theoretical computer science literature on counting problems also
presents reductions with many other kinds of interpolation, not just of poly-
nomial coefficients, which deserve further investigation. However, not all
of these are obviously applicable to inference with real-valued parameters.
Some, for instance, use modular arithmetic.

We have chosen the name “spectral reduction” because using multiple
evaluations to compute the coefficients of a polynomial is reminiscent of the
Fourier transform.

3.7 Summary

We have demonstrated a number of formal reductions between different types
of (discrete) factor graphs (DFGs). Each of these reductions proves that
inference in one particular class of graphs can be implemented using inference
in a more restrictive class. To the best of our knowledge, of the theorems

43

Universal

Positive Universal

Binary Pairwise

Planar

7 4

16 or 18

15

1618
20

Figure 2: The three factor graph subclasses and their intersections. Re-
gions are shaded according to the universality status of their subclass, and
numbered with the corresponding theorem or corollary. Recall that “positive
universal” also implies “almost universal” according to our definitions.

appearing in this section only Theorem 4 and Theorem 5 have been published
before.

We summarize the results. All of the three classes (pairwise, binary, pla-
nar) by themselves can simply reduce DFGs, i.e. are “universal”15. Planar
binary factor graphs and planar pairwise factor graphs are also universal.
Binary pairwise factor graphs (BPFGs) and planar BPFGs are universal
only for models with strictly positive potential functions, but not for general
models - what we have called “positive universal”16. Simple reductions from
DFGs with zeroes to each of these classes are also possible in a limit (“al-
most universal”17). Finally, continuous polynomial-time reductions of the
“spectral reduction” type exist from DFGs with zeroes to BPFGs and planar
BPFGs. These results are depicted in Figure 2.

If we can bound the variable arity and factor size in the input DFG, the
relationship between input and output model size is O(n2) for reductions to
planar form, and O(n) for all other reductions.

15Definition 2
16Definition 3
17Definition 10

44

4 Experiments

The efficient mechanics of our simple reduction (Definition 1), and its straight-
forward definition using one-to-one query transformations, set it apart from
existing polynomial-time reduction concepts. The choice of these properties
was originally motivated by a need to better understand model transfor-
mations from a practical standpoint, with potential applications to modern
inference algorithms. At the same time, because we lack an inference algo-
rithm which can be considered “optimal”, we also lack a precise theoretical
characterization of model difficulty. Consequently it is hard for us to give
a useful formal analysis of the ways in which our reductions might make
inference on a given model more or less difficult. Instead, we present some
computer experiments which are intended to provide a certain amount of
insight into that question.

We do not consider reductions from models with multiple variables, but
focus on the case of a single n-ary variable, implemented in binary pairwise
form using the 1-of-n gadget of Theorem 11. We fix n = 5; and we skew
the marginals with a singleton factor (translating under the reduction to
five singleton factors18), to avoid concerns about symmetry artifacts in the
marginal error measurements. But similar results are obtained for uniform
scaling, as well as different values of n.

Simple reductions We consider two implementations of the 1-of-5 gadget,
corresponding to the ones given in Theorem 11. Both use a K5 graph with[

1 1
1 0

]
potentials to constrain at most one (0,1) variable to be 1. The first

excludes the all-zero case using a limit of soft-XORs (Figure 3a), and the
second with a limit of singleton [1 t] “weight” factors (Figure 3b). We
also explore inference in the second model using the “spectral reduction”
polynomial interpretation method of section 3.6.

The following five approximate inference algorithms are applied to the
“transformed” models:

• Belief Propagation - Belief Propagation (BP) with random order
message updates

18The factor has randomly-chosen values (0.42, 0.031, 0.052, 0.43, 0.068), which are also
the marginal probabilities for the variable.

45

⊕

s1

⊕s2

⊕

s3

⊕
s4

⊕
s5

(a) With soft-XORs

s1
s2

s3
s4

s5

ψi = [1 t]

(b) With weights

Figure 3: Different implementations of the 1-of-5 gadget

• Convergent BP - BP using the convergent double-loop algorithm of
Heskes, Albers, and Kappen (HAK) (Heskes et al., 2003), which is an
instance of CCCP (Yuille, 2002)

• Triangular GBP - Generalized Belief Propagation (GBP), with trian-
gular regions, using HAK updates (Yedidia et al., 2001a; Heskes et al.,
2003).19

• Loop Corrected BP - (LCBP) Algorithm of Mooij et al. (2007),
with full cavity updates

• Gibbs Sampling - (Geman and Geman, 1984)

All but Gibbs Sampling are based in some way on the Belief Propagation
message passing framework. Mean Field message passing is not used because
of the presence of zeroes in the K5 edge factors, which forces the algorithm
to put all of its weight on a single variable assignment (Minka, 2005).

None of the algorithms are specific to any of our restricted classes of factor
graphs. This is because although these classes have been a useful structure
for inference research, all of the currently competitive algorithms that might
have been originally defined on them were apparently generalizable.

Errors are average L1 errors of single variable marginals, computed with
respect to exact marginals in the target model. Exact marginals in the target

19Note that GBP can use regions of arbitrary size. Larger regions are associated with
better accuracy, but slower convergence. We chose to restrict ourselves to triangular
regions for the sake of simplicity.

46

and transformed models are calculated using the Junction Tree algorithm
(Jensen et al., 1990). All algorithms use the implementations of libDAI 0.2.4
(Mooij, 2010). Gibbs, BP, and LCBP results are averaged over 10 runs. The
tolerance for convergence of message passing algorithms was set to 10−9.

Figure 4 shows the results for the soft-XOR 1-of-5 as a function of soft-
XOR strength k. Errors for message-passing algorithms are shown on the left,
and for Gibbs sampling on the right. Corresponding plots for the weighted
transformed model, as a function of weight t, are shown in Figure 5.

0.001

0.01

0.1

1

0.1 1 10

k

Exact
Belief Propagation
Convergent BP
Triangular GBP
Loop Corrected BP

(a) Message-passing algorithms

0.001

0.01

0.1

1

1 10

k

Exact
Gibbs (105)
Gibbs (106)
Gibbs (107)

(b) Gibbs sampling

Figure 4: Performance of inference algorithms on 1-of-5 model using soft-
XOR factors of strength k

0.0001

0.001

0.01

0.1

1

0.1 1 10 100 1000

t

Exact
Belief Propagation
Convergent BP
Triangular GBP
Loop Corrected BP

(a) Message-passing algorithms

0.0001

0.001

0.01

0.1

1

0.1 1 10 100 1000

t

Exact
Gibbs (105)
Gibbs (106)
Gibbs (107)

(b) Gibbs sampling

Figure 5: Performance of inference algorithms on 1-of-5 model using t-
weighting

The results are straightforward to interpret. None of the message-passing
algorithms was able to perform well on the soft-XOR model. Although LCBP

47

seems to have been able to achieve near-exact marginals for small k, it starts
to fail for k > 0.3, well before the approximate soft-XOR model begins to
converge to the target model at k = 1 (see the “Exact” error curve). Only
Gibbs sampling was able to track exact marginals beyond k = 1. The point
of best accuracy increases as more sampling is performed, occurring at k = 1
for 105 samples, k = 1.5 for 106, and k = 2 for 107. As k increases, the
multi-modal nature of the model becomes more pronounced, and the relative
mass assigned to the all-zero state decreases. The message-passing algorithms
have difficulty averaging over these multiple modes, although LCBP, which
considers more distant correlations, does well initially. Gibbs sampling must
transition through the all-zero state to go between modes, and so more sam-
ples are required as the probability of this state in the approximate model
goes to zero.

Similar behavior is seen with the weighted transformed model, although
it is interesting that the algorithms are almost uniformly more accurate in
the weighted representation. Presumably this has something to do with its
simpler structure, with only 5 variables and no soft-XORs. For instance,
for Gibbs to transition between two modes in the soft-XOR model, not only
a move to the all-zero state but also appropriate changes in the auxiliary
variables may be required. The weighted model requires only one transition.

Errors of BP and GBP on the exact 1-of-5 model, implemented using
hard-XORs with 3-wise factors, were 0.095 and 0.052 respectively. (Gibbs
was unable to make any transitions in this model, while LCBP had conver-
gence issues. Convergent BP had the same error as BP.) These errors are
the same as the k = 0 soft-XOR errors. In both cases, the auxiliary variables
had uniform marginals. These observations point to an interesting property
of models which use the Leisink construction. The algorithms BP and GBP
were not even able to make use of the 3-wise hard-XOR factor, as evidenced
by the fact that the marginals remained the same when it was removed
(i.e. replaced by a k = 0 soft-XOR, which has uniform potentials). Yet the
performance of the algorithms was made even worse when k was increased,
showing that the presence of the Leisink gadgets alone, even more than the
XOR they are seeking to emulate, can create problems for message-passing
algorithms based on BP. It is probable that the loops in the model cause the
large factors of the Leisink gadget to be overcounted for large k, while for
small k, non-local correlations die out and factor contributions are counted
more accurately. Similar reasoning would apply to the weighted models, but
to a lesser extent.

48

1e-05

0.0001

0.001

0.01

0.1

1

0.001 0.01 0.1 1 10 100 1000

h

Convergent BP
Belief Propagation

Triangular GBP

(a) Using Z, at t ∈ {h, h/2}

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0.0001 0.001 0.01 0.1 1 10 100 1000

h

107
106

105

Gibbs
BP

GBP
Exact
LCBP

(b) Without Z, at t ∈ {h, 2h/3, h/3}

Figure 6: Performance of “spectral” interpolation methods on 1-of-5 model,
with and without estimates of Z

Spectral reductions We used two interpolation methods to study the
BPFG spectral reduction of Theorem 21. The first applies to inference algo-
rithms that provide an estimate of the partition function Z of a model, such
as BP and GBP. It uses evaluations at multiple t’s to estimate the leading
coefficient of a polynomial corresponding to the partition function of a model
which has been conditioned on xi - call this Z(xi; t). This quantity is approx-
imated by bi(xi; t)Z(t) where bi(xi; t) is the marginal estimate of variable xi
in the t-model. Such approximations can be provided for every variable in
the model using a single run of the algorithm. After running the algorithm
for enough different values of t, approximate polynomials are interpolated
for each variable-value pair, and approximate marginals are then obtained
by normalizing the appropriate pairs of leading coefficients.

The second method interpolates a rational function corresponding to
Z(xi; t)/Z(t), whose values are approximated by bi(xi; t). The second method
applies to any inference algorithm, including Gibbs and LCBP, because it
only requires variable marginals and no partition function estimate. In this
case we are interested in the ratio of the leading coefficients of the numerator
and denominator, which approximates P (xi).

For single-variable models, method 1 requires two evaluations, and method
2 requires three. With method 1, we evaluate at t1 = h and t2 = h/2, for

different values of h. The formula is Z0 = Z(t1)−Z(t2)
t1−t2 . With method 2, we

evaluate at t1:3 = (h, 2h/3, h/3). The formula is

b =
b1t1−b2t2
b1−b2 −

b2t2−b3t3
b2−b3

t1−t2
b1−b2 −

t2−t3
b2−b3

(52)

49

Results for the two methods are shown in Figure 6. The first thing to note is
that the algorithms with Z estimates are able to give almost arbitrarily small
error under method 1 by choosing h small. This is in surprising contrast to the
approximate simple reductions presented earlier, where the same algorithms
were largely unable to provide useful results.

Similar behavior appears for BP and GBP in method 2, although floating-
point precision issues are encountered in the lower left corner of the plot
(delimited by the “Exact” line). These precision issues can be seen to arise
from the fact that each new coefficient to be estimated requires an additional
constant number of digits of accuracy, which is partly dependent on the model
and the choice of evaluation points. To put it another way, the 3-evaluation
method is trying to measure a non-linearity in bi(xi; t), which becomes more
linear as t → 0. This is a big concern for spectral reduction methods, and
should also affect method 1 on multivariate models. However, there may be
ways around this problem, such as using complex roots of unity, modifying
the algorithm to propagate polynomials in t directly (with truncation), or
simply using higher-precision arithmetic. The second option would be close
to the Linear Response algorithm of Welling and Teh (2004). How these
ideas could be made to apply to Gibbs sampling, as shown in Figure 6b,
is not so clear. Method 2 is able to achieve reasonable results with Gibbs
on our 1-of-5 target model which, due to complete isolation of the modes,
is unamenable to direct Gibbs sampling or even other “mode smoothing”
techniques like “Tempered sampling” (Kimura et al., 1991). This is rather
encouraging for us, but note that the minimum errors are the same as with
the weighted model, shown in Figure 5b, which required only one evaluation;
and both the model and our analysis of it are rather specialized.

We don’t expect the spectral reduction method to give results superior
to BP on multivariate input models, because the transformed models would
contain loops even if the target (input) model is a tree.

We are interested to know whether it is possible to apply the spectral
reduction idea to general approximate inference problems, to “disentangle”
inference in a model by adding free variables which function to smooth over
modes, and then using some kind of polynomial interpolation arithmetic to
recover approximate marginals for the original model.

50

5 Conclusion

We examined the problem of model reductions from an applied, statistical
perspective. We formalized a useful reduction concept called “simple re-
duction” based on a single-valued mapping of queries between models. We
were able to completely characterize the simple-reducibility of discrete factor
graphs to three classes - binary, pairwise, and planar - and their four possible
intersections (Figure 2). Simple reductions from discrete factor graphs with
zeroes to binary pairwise factor graphs were shown to be impossible in gen-
eral, but we exhibited a continuous “spectral” reduction requiring a linear
number of evaluations of the transformed model (quadratic for the planar
case) which overcomes this difficulty. Experiments then showed that models
produced by the spectral reduction were more amenable to inference than
those produced by the simple reduction. An open problem, suggested by
our theoretical results, is to find a complexity measure with respect to which
inference in binary pairwise factor graphs can be proven to be more tractable
than inference in general discrete factor graphs.

Acknowledgments

We are indebted to Martijn Leisink for his 3-wise soft-XOR construction, and
to Joris Mooij for pointing us to it. We would also like to thank Tom Minka,
Yee Whye Teh, Jonathan Yedidia, Tom Heskes, Wim Wiegerinck, Alex Ihler,
and Dror Weitz for replying to queries, and three anonymous reviewers for
thoughtful and useful feedback.

References

Arora, S. and Barak, B. (2009). Computational complexity: a modern ap-
proach, volume 1. Cambridge University Press Cambridge, UK.

Barahona, F. (1982). On the computational complexity of Ising spin glass
models. Journal of Physics A: Mathematical and General, 15:3241–3253.

Bernstein, E. and Vazirani, U. (1997). Quantum complexity theory. SIAM
Journal on Computing, 26(5):1411–1473.

Boros, E. and Hammer, P. (2002). Pseudo-Boolean Optimization. Discrete
Applied Mathematics, 123(1-3):155–225.

51

Braunstein, A., Mezard, M., and Zecchina, R. (2005). Survey propagation: an
algorithm for satisfiability. Random Structures and Algorithms, 27(2):201–
226.

Bulatov, A. and Grohe, M. (2005). The complexity of partition functions.
Theoretical Computer Science, 348(2):148–186.

Castillo, E., Gutiérrez, J., and Hadi, A. (1997). Expert systems and proba-
bilistic network models. Springer Verlag.

Chertkov, M. and Chernyak, V. (2006). Loop series for discrete statistical
models on graphs. Journal of Statistical Mechanics: Theory and Experi-
ment, page P06009.

Chertkov, M., Chernyak, V., and Teodorescu, R. (2008). Belief propagation
and loop series on planar graphs. Journal of Statistical Mechanics: Theory
and Experiment.

Cook, S. (1971). The complexity of theorem-proving procedures. In Proceed-
ings of the third annual ACM symposium on Theory of computing, pages
151–158. ACM.

Cooper, G. (1990). The computational complexity of probabilistic inference
using Bayesian belief networks. Artificial intelligence, 42(2-3):393–405.

Dyer, M., Goldberg, L., and Jerrum, M. (2009). The complexity of weighted
Boolean CSP. SIAM Journal on Computing, 38(5):1970–1986.

Eaton, F. (2011). A conditional game for comparing approximations. In
Proceedings of the Fourteenth International Conference on Artificial Intel-
ligence and Statistics, volume 15.

Fisher, M. (1966). On the dimer solution of planar Ising models. Journal of
Mathematical Physics, 7(10):1776–1781.

Gallager, R. (1962). Low-density parity-check codes. Information Theory,
IRE Transactions on, 8(1):21–28.

Garey, M. and Johnson, D. (1979). Computers and Intractability: A Guide
to the Theory of NP-completeness. WH Freeman & Co. New York, NY,
USA.

52

Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions,
and the Bayesian restoration of images. IEEE transactions on pattern
analysis and machine intelligence, 6(6):721–741.

Globerson, A. and Jaakkola, T. (2007). Approximate inference using planar
graph decomposition. Advances in Neural Information Processing Systems
19, page 473.

Goldberg, L. and Jerrum, M. (2008). Inapproximability of the Tutte poly-
nomial. Information and Computation, 206(7):908–929.

Heskes, T., Albers, K., and Kappen, B. (2003). Approximate inference and
constrained optimization. In Proceedings of the 19th Annual Conference
on Uncertainty in Artificial Intelligence, volume 13, pages 313–320.

Ihler, A. (2007). Accuracy Bounds for Belief Propagation. In Proceedings of
the 23rd Conference in Uncertainty in Artificial Intelligence, pages 183–
190.

Ishikawa, H. (2009). Higher-order clique reduction in binary graph cut. In
Computer Vision and Pattern Recognition, pages 2993–3000. IEEE.

Jensen, F., Olesen, K., and Andersen, S. (1990). An algebra of Bayesian
belief universes for knowledge-based systems. Networks, 20(5):637–659.

Jung, K. and Shah, D. (2006). Inference in Binary Pair-wise Markov Random
Fields through Self-Avoiding Walks. arXiv preprint cs/0610111.

Kasteleyn, P. (1961). The statistics of dimers on a lattice. Physica,
27(12):1209–1225.

Kasteleyn, P. (1963). Dimer statistics and phase transitions. Journal of
Mathematical Physics, 4(2):287–293.

Kimura, K., Taki, K., and Kikō, S. (1991). Time-homogeneous parallel an-
nealing algorithm. Institute for New Generation Computer Technology.

Knuth, D. (2008). The Art of Computer Programming, IV, Fascicle 0: In-
troduction to Combinatorial Algorithms and Boolean Functions. Addison-
Wesley.

53

Kschischang, F., Frey, B., and Loeliger, H. (2001). Factor graphs and
the sum-product algorithm. IEEE Transactions on information theory,
47(2):498–519.

Kuratowski, K. (1930). Sur le problème des courbes gauches en topologie.
Fund. Math., 15:271–283.

Leisink, M. (2010). Personal communication.

Lichtenstein, D. (1982). Planar formulae and their uses. SIAM journal on
computing, 11:329–343.

Minka, T. (2005). Divergence measures and message passing. Microsoft
Research, Cambridge, UK, Tech. Rep. MSR-TR-2005-173.

Montanari, A. and Rizzo, T. (2005). How to compute loop corrections to
the Bethe approximation. Journal of Statistical Mechanics: Theory and
Experiment, 2005(10):P10011.

Mooij, J. (2010). libDAI 0.2.5: A free/open source C++ library for Discrete
Approximate Inference. Journal of Machine Learning Research, 11:2169–
2173.

Mooij, J. and Kappen, H. (2005a). On the properties of the Bethe approxima-
tion and loopy belief propagation on binary networks. Journal of Statistical
Mechanics: Theory and Experiment, 2005(11):P11012.

Mooij, J. and Kappen, H. (2005b). Validity estimates for loopy belief prop-
agation on binary real-world networks. Advances in Neural Information
Processing Systems 17, pages 945–952.

Mooij, J., Wemmenhove, B., Kappen, H., and Rizzo, T. (2007). Loop cor-
rected belief propagation. In Proceedings of the Eleventh International
Conference on Artificial Intelligence and Statistics.

Nair, C. and Tetali, P. (2007). The correlation decay (CD) tree and strong
spatial mixing in multi-spin systems. arXiv preprint math/0701494.

Papadimitriou, C. (1994). Computational complexity. Addison-Wesley.

54

Pearl, J. (1982). Reverend Bayes on inference engines: A distributed hierar-
chical approach. In Proceedings of the AAAI National Conference on AI,
pages 133–136.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann.

Pearl, J. (2000). Causality: models, reasoning, and inference. Cambridge
University Press.

Rosenberg, I. (1975). Reduction of bivalent maximization to the quadratic
case. Cahiers du Centre d’Etudes de Recherche Operationnelle, 17:71–74.

Sanghavi, S., Shah, D., and Willsky, A. (2009). Message passing for maxi-
mum weight independent set. Information Theory, IEEE Transactions on,
55(11):4822–4834.

Schaefer, T. (1978). The complexity of satisfiability problems. In Proceedings
of the tenth annual ACM symposium on Theory of computing, pages 216–
226.

Selman, B., Levesque, H., and Mitchell, D. (1992). A new method for solving
hard satisfiability problems. In Proceedings of the tenth national conference
on artificial intelligence, pages 440–446.

Sudderth, E., Wainwright, M., and Willsky, A. (2008). Loop Series and
Bethe Variational Bounds in Attractive Graphical Models. In Advances in
Neural Information Processing Systems 20, pages 1425–1432.

Ungar, P. (1951). A theorem on planar graphs. Journal of the London
Mathematical Society, 1(4):256–262.

Valiant, L. (1979a). The complexity of computing the permanent. Theoretical
computer science, 8(2):189–201.

Valiant, L. (1979b). The complexity of enumeration and reliability problems.
SIAM Journal on Computing, 8:410–421.

Valiant, L. (2006). Accidental algorthims. In Foundations of Computer Sci-
ence, 47th Annual IEEE Symposium on, pages 509–517, Los Alamitos, CA,
USA. IEEE Computer Society.

55

Valiant, L. (2008). Holographic algorithms. SIAM Journal on Computing,
37(5):1565–1594.

Wagner, K. (1937). Über eine eigenschaft der ebenen komplexe. Math. Ann.,
144:570–590.

Wainwright, M., Jaakkola, T., and Willsky, A. (2002). A New Class of Upper
Bounds on the Log Partition Function. In Proceedings of the Eighteenth
Conference Annual Conference on Uncertainty in Artificial Intelligence,
pages 536–54.

Watanabe, Y. and Fukumizu, K. (2011). New graph polynomials from the
Bethe approximation of the Ising partition function. Combinatorics, Prob-
ability and Computing, 20(02):299–320.

Weitz, D. (2006). Counting independent sets up to the tree threshold. In
Proceedings of the thirty-eighth annual ACM symposium on Theory of com-
puting, pages 140–149. ACM.

Welling, M. and Teh, Y. (2001). Belief optimization for binary networks:
A stable alternative to loopy belief propagation. In Proceedings of the
Seventeenth conference on Uncertainty in artificial intelligence, pages 554–
561.

Welling, M. and Teh, Y. (2004). Linear response algorithms for approximate
inference in graphical models. Neural computation, 16(1):197–221.

Wiegerinck, W. (2000). Variational Approximations between Mean Field
Theory and the Junction Tree Algorithm. In Proceedings of the Sixteenth
conference on Uncertainty in artificial intelligence, pages 626–633.

Yedidia, J., Freeman, W., and Weiss, Y. (2001a). Generalized belief prop-
agation. Advances in Neural Information Processing Systems 13, pages
689–695.

Yedidia, J., Freeman, W., and Weiss, Y. (2001b). Understanding belief propa-
gation and its generalizations. International Joint Conference on Artificial
Intelligence.

Yuille, A. (2002). CCCP Algorithms to Minimize the Bethe and Kikuchi Free
Energies: Convergent Alternatives to Belief Propagation. Neural Compu-
tation, 14(7):1691–1722.

56

	Introduction
	Fundamentals
	Theory of Reductions
	Marginal inference on specialized graphs
	Definitions

	Theory
	Definition of reduction
	Pairwise factor graphs
	Binary factor graphs
	Binary pairwise factor graphs
	Planar binary pairwise graphs
	Spectral reductions
	Summary

	Experiments
	Conclusion

