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Abstract

In this paper we study the problem of learning to do approximate inference. We
propose a protocol allowing two inference algorithms to communicate about a
shared model, with one algorithm serving as a teacher and the other as a student.
We derive several heuristics for choosing data to transfer under this protocol, and
perform experiments to evaluate the effectiveness of each one. We do not pro-
pose a concrete inference algorithm which could serve as the student. Instead,
we attempt to estimate the ideal maximum efficiency of each heuristic under all
possible students, substituting a synthetic student which simulates computational
uncertainty by reasoning over the space of models.

1 Introduction

The act of learning in statistical AI is typically understood as a process of reproducing a statistical
distribution by observing data. In this paradigm the student acquires data to which he previously
had no access, and then attempts to model this data. Here we extend the idea of learning to a broader
setting, in which the student already has access to the relevant data, but may lack the computational
resources to query it in some desired way. We are interested in learning “how”, as contrasted with
learning “what”. An example domain would be a game like chess, in which the constraints on
moves can be quickly understood, but where becoming a good player takes considerable additional
learning. We might consider a better domain from a theoretical standpoint to be that of statistical
inference, because it is general enough to reduce most problems of interest, and because it represents
uncertainty explicitly. This paper is addressed to learning in the inference framework.

The ability for a computer program to learn to do computation should have wide application, because
so many useful computations are intractable. The catch is that our notion of learning presupposes
a teacher who already possesses at least some of the skills desired by the student. The alternative,
in which learning is carried out solitarily, as a form of experimentation or self-adaptation, is also
interesting but misses the opportunity to incorporate the results of previous effort. Examples of
this simpler kind of adaptation can already be found in approximate inference: for example, in a
message-passing algorithm, one can think about using heuristics or experimentation to optimize
the order in which messages are sent [4], or the representation of messages in continuous variable
models [3]. In MCMC algorithms, parameters of transition kernels can be adaptively tuned in ways
that preserve stationarity [9].

On the other hand, the learning “how” that takes place between a student and a teacher has, to our
knowledge, yet to be explored, and it poses difficulties of a practical nature owing to the need for an
intelligent teacher. The problem is that either the teacher is a human or some other kind of black-
box oracle to be found in the environment, in which case the domain is likely to be very specialized;
or that the teacher is another algorithm, and then one asks why this algorithm shouldn’t simply be
run a bit longer, rather than transferring its knowledge to a student. The first possibility will be
touched upon again in the discussion section, but we are more interested in the second, where the
teacher is another program. Here a number of scenarios could be imagined. Perhaps an inference
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problem is being attacked on many processors in parallel, and there is a need to merge the results
without losing information. In this case, each intermediate result could transfer its knowledge by
serving as a teacher to an approximation which then becomes the final output. Another possibility is
that of having two very different varieties of algorithms merge their best qualities together through
learning. Or perhaps the learning protocol itself could serve as the backbone of an evolutionary
adaptive algorithm. In any case we hope that the idea of learning to do inference is sufficiently
compelling to justify investigating for its own sake.

We are interested in the problem of approximate inference, rather than exact inference, because
it seems to provide greater scope for learning. We consider that an approximate inference algo-
rithm is given a fixed amount of time in which to provide the most accurate available estimate of
each variable’s marginal distribution (or conditioned marginal distribution, if provided a set of addi-
tional variable assignments). Such an algorithm would want to learn how to produce more accurate
marginals in the time available to it.

However, because no approximate inference algorithm has yet been developed which is capable
of learning from a teacher, we are obliged to begin by studying the learning protocol in isolation.
We propose a protocol by which information could be transferred between two algorithms, and
simulate the use of this protocol under various heuristics for choosing which information to transfer.
Without a specific algorithm to serve as a student, we simulate an optimal student using uncertainty
over the space of models as a substitute for actual computational limitations. Note that the student
in our framework has access to the full model specification, since it is not a question of learning
“what” but learning “how”. The synthetic student of our experiments pretends not to know these
model parameters, but maintains a distribution over possible models and updates this distribution
whenever he receives information from the teacher.

The design of our protocol follows from the intuitive assumption that the information to be trans-
ferred between teacher and student consists of locations of regions of high or low probability in the
model. For simplicity, these locations are identified using full variable assignments, or “states”, of
the model. Both teacher and student are inference algorithms, and the heuristic which chooses states
to transfer has access to the marginals and conditioned marginals of both algorithms.

2 Related work

Although the present paper is the first, to our knowledge, to explore learning to do inference in the
presence of a teacher, there is a variety of existing work which relates tangentially to our effort. We
have already cited some work on tuning parameters of MCMC and message passing algorithms.

Learning about a model by collecting a list of interesting states is related to the work of Rasmussen
and Ghahramani [8], which fits a kernel-based approximation to a density function given a collec-
tion of samples. Their kernel method is shown to be superior to simply treating the samples as
probabilistic estimates, which is in agreement with our approach. But there is no teacher, and sam-
ples are chosen randomly. Their method is demonstrated on continuous models with few variables,
and unfortunately we know of no kernel which could give tractable mass estimates in our discrete,
multi-variate setting.

The work of Santos and Shimony [10] attempts to perform inference in discrete models by collecting
states of high probability, although unlike our work it only applies to directed networks. We examine
similar heuristics in our own setting in Section 8.

Finally, there are some approaches to building models from data by representing the empirical dis-
tribution as a collection of modes, or regions of high probability [6, 11]. Our own work assumes
a model has already been supplied, and is able to associate example states with both high and low
probability mass. What is common to both efforts is a state-wise decomposition of distribution
function.

Building models by collecting states could be contrasted to variable-wise decompositions, which
might encode independencies as in Cut-set Conditioning [7]. Such “multiplicative” decompositions
could provide the basis for a complementary version of the protocol we present in this paper, which
in effect decomposes a model additively.
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The synthetic student of Section 5 is performing a kind of “tensor recovery”, which is the problem
of filling in the unknown entries of a tensor when some of them have been observed, and has been
well studied [2].

3 Background

We assume that we are given a model specified by a “factor graph”, which is a general representation
for statistical models [5]. A factor graph defines a distribution over n variables x := (x1, . . . , xn)
as a normalized product of non-negative factors ψα:

P (x) =
1

Z

∏
α

ψα(xα) (1)

where α indexes a collection of sets of variables and Z is a normalizing constant, also called the
“partition function”. We will refer to ZP (x) =

∏
α ψα(xα) as the unnormalized joint (at state x).

Note that ZP is always tractable to compute. The object of approximate inference is to estimate the
marginals of the model:

P (xi) =
1

Z

∑
x\i

∏
α

ψα(xα) (2)

as well as conditioned marginals P (xi|xC), which are the same as marginals of a conditioned model∏
α ψα(xα)

∏
c δ(xc, x

∗
c).

4 Protocol

We now define the learning protocol. This protocol takes place between a “teacher” and a “student”.
It is motivated by the idea that the student, in exploring areas of the probability distribution defined
by a model, might miss certain regions of importance. The teacher could then call his attention to
these regions using the communication protocol. In theory we could define a region of state space
using any number of representations, such as a partial assignment or even another model.

This paper considers the simplest scenario, representing a region using a full assignment of values
to variables, which we call a state. This representation, in addition to its simplicity, has the added
advantage that it obviates the need for the teacher to include any notion of probability mass in his
transmission. This is because the student can easily measure the relative mass of different states
using ZP (see above) from his own copy of the model specification. Thus, the student never has to
duplicate any of the teacher’s opinions about the marginals or partition functions, and so is allowed
to exceed the accuracy of the teacher.

Teacher
x∗

−−−−−−−−−−→
Q←−−−−−−−−−−

Student

The interaction cycle is formalized in the following pseudo-code:
Protocol 1. Repeat for an arbitrary number of turns.

At turn m:

1. Student proposes an approximate distribution Q based on the example states and unnor-
malized joints he has seen so far: {(x∗(i), ZP (x∗(i)))}i=1:m−1

2. Teacher selects a new example x∗(m) (perhaps in response to errors in the student’s distri-
bution)

5 Implementation of Synthetic Student

Our experiments (Section 8) will explore various heuristics for choosing an example state to pass
from teacher to student under the learning protocol. The state will depend in some way on marginals
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currently expressed by the student, which should in turn depend on states previously transmitted
by the teacher. Rather than using a particular approximate inference algorithm to calculate these
marginals, we simulate an optimal student using exact inference on a distribution over possible
models. In this way we hope to obtain generally applicable results.

The idea behind our simulation of the student is that, although the student knows the entire model
specification and could in theory evaluate ZP at any desired state, we pretend that he is only aware
of the values of ZP at those example states shown to him by the teacher, and knows nothing else
about the model. The student maintains a distribution over possible models, which is conditioned to
agree with ZP at the example states. He uses this conditioned distribution to produce new marginals
for the teacher. We can argue that the student defined in this way is making optimal use of the
information provided by the teacher, without doing any additional exploration of his own.

The student’s distribution, for simplicity, assumes the model to be a fully connected binary pairwise
factor graph, meaning that all variables are binary, all factors have size two (pairwise), and there is
one factor for every pair of variables (fully connected). The potentials of the graph are distributed
as exponentials of normal random variables, which is a traditional way of generating models for
experiments in approximate inference. We write ψij(xi, xj) = exp(βW ), where W ∼ N(0, 1).

Initially the potentials are believed by the student to be sampled independently, but when he incor-
porates his set of observations of the unnormalized joint {(x∗(i), ZP (x∗(i)))}i=1:m−1, then correla-
tions will be introduced in his beliefs. If he represents the log-potentials using a multivariate normal
distribution, then these correlations can be represented in a covariance matrix, and after each obser-
vation the posterior of his beliefs will be in the same class as the prior (i.e., it is a conjugate prior).
The observations

z∗ = ZP (x∗) (3)

are equivalent to

z∗ =
∏
jk

ψjk(x∗jk) (4)

=⇒ log z∗ =
∑
jk

logψjk(x∗jk) (5)

For our distribution over models, the quantities logψjk(xj , xk) are distributed according to a multi-
variate normal distribution with mean µ and variance Σ (indexed by (j, k > j, xjk) and initialized to
β2I). Then (5) is a statement that some subset of the dimensions of this normal distribution should
have a certain sum (namely log z). A set of such constraints is in turn a special case of a linear
constraint, say

B · y = v, (6)

on draws y from a multivariate normal, where B is a matrix and v a vector. More specifically, in our
experiments, y is indexed by (j, k > j, xj , xk) and represents a vector of log potentials specifying
the whole model, while B contains entries which are 0 or 1 according to whether a particular poten-
tial entry contributes to a given state, and v is a column vector of the log unnormalized joint entries
corresponding to each example x∗(i):

vi = log z∗(i) = logZP (x∗(i)) (7)

Conditioning on this linear constraint is equivalent to transforming the mean and the variance of the
multivariate normal distribution:

µ′ = µ− ΣBT (BΣBT )−1(Bµ− v) (8)

Σ′ = Σ− ΣBT (BΣBT )−1BΣ (9)

Although we were able to discover an analytic form for the updates to the distribution parameters
in this case, there appears to be no simple analytic expression for the expected marginals of factor
graphs drawn from the distribution. So, when quantities such as expected marginals are needed, we
simply draw many sample graphs, compute their marginals, and average together the results. This
averaging seems to be more sensible in the log domain since some marginals may be very close to 0
or 1. Averaging sampled marginals in the log domain is equivalent to taking the geometric average
and renormalizing.
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6 Optimal Teacher

Drawing on the work of the previous section, we derive a criterion which the teacher can use to
maximally reduce one measure of the student’s error. This requires examining the student’s beliefs
at every state, and so is not intended to be useful in practice, but it is useful to us as a benchmark in
our experiments.

Below, we write ZP̃ (x) for a random variable representing a draw from the student’s beliefs about
ZP (x), while ZP̂ (x) represents an estimator of ZP (x). We use a geometric average unless stated
otherwise: ZP̂ (x) ≡ expE[logZP̃ (x)].

We can derive an analytic expression for the additive change in µ when a new example x∗ is seen.
From equation 8 we have

∆µ = Σ∆BT (∆BΣ∆BT )−1∆ logZP̂ (x∗) (10)

where ∆B encodes the new constraint z∗ = ZP (x∗) and ∆ logZP̂ (x∗) = Bµ − v is the differ-
ence between the old and new estimates of ZP (x∗). Note that ∆BΣ∆BT is just the variance of
logZP̃ (x∗). If Σ is initialized to a positive multiple of the identity matrix, β2I , encoding a spherical
normal distribution, then β−2Σ will be a projection and we will have ΣΣ = β2Σ. This allows us to
write a simple expression for the L2 norm of ∆µ, which we obtain by multiplying equation 10 by
its transpose and taking the square root:

||∆µ||2 = β

∣∣∣∆ logZP̂ (x∗)
∣∣∣√

Var(logZP̃ (x∗))
(11)

Since each update brings µ closer to the parameters of the true model, this equation tells us how
to find updates which will maximize one measure of the speed of convergence of the student’s
representation: We should choose states x∗ for which the error in his point estimate of logZP (x∗),
relative to the standard deviation of the same, is greatest. This heuristic is called “ML2DM” in
the experiments (“max L2 delta µ”). It is related to Mahalanobis distance. Note that although the
distribution and its intersection with subspaces are both spherical, its projections along axes are not.
Thus the denominator of (11) is not constant but depends on the overlap between x∗ and the example
states observed by the student.

7 Variable-Greedy Teacher

The “optimal teacher” or ML2DM, as noted above, is not computationally useful, since if we could
examine every state in a model then we could also do exact inference in that model. In this section
we describe a straightforward variant which only uses the marginals and conditioned marginals
expressed by the student and teacher. We call this method “CG”, since it turns out to be related to
a method for comparing the accuracy of two approximate inference algorithms which is called the
“Conditional Game” [1].

If we ignore the denominator in the ML2DM criterion (11), the teacher searches for a state whose
true logZP is as much larger or smaller than the student’s estimated logZP̂ as possible. This is
to say that the ratio of the teacher’s to the student’s ZP is biggest or smallest at that state. A faster
approach which only uses the variable marginals would be to look for the (variable, value) pair
(i, x∗i ) where the ratio of the teacher’s to the student’s marginal is as big as possible, i.e. maximizing
P (x∗i )/Q(x∗i ) where Q represents the student’s marginals. Then, conditioning the model on xi =
x∗i , we would have the teacher and student generate new (conditioned) marginals and repeat, until
all variables are assigned and a full state x∗ is obtained. In other words, over n turns we choose a
new variable it and value x∗it according to:

(it, x
∗
it) = argmax

(j,xj)

j /∈i1:t−1

P (xj |x∗i1:t−1
)

Q(xj |x∗i1:t−1
)

(12)
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This approximately maximizes the expression

ZP (x)

ZQ(x)
=
P (xi1)

Q(xi1)

P (xi2 |xi1)

Q(xi2 |xi1)
. . .

P (xin |xi1 . . . xin−1
)

Q(xin |xi1 . . . xin−1
)

(13)

by greedily maximizing each term on the right hand side in turn. The left-hand side is just the
exponential of ∆ logZP̂ (x∗) of 11.

It would also make sense to minimize the ratio of the teacher’s to the student’s marginal, as long as
the same operation (namely maximization or minimization) is employed consistently when generat-
ing each state. Either version is an instance of the Conditional Game.

8 Experiments

In our experiments, we compare five different methods for the teacher to choose example states at
which to update the student’s distribution over potentials.

• maxL2 delta µ - (ML2DM) Chooses states which maximize ||∆µ||2 according to equation
11.

• max diff entry - (MDE) At each turn, all states are examined and the state is chosen
at which the entry in the student’s unnormalized joint estimate is most different from the
teacher’s (exact) unnormalized joint, e.g. argmaxx

∣∣∣ZP (x)− ZP̂ (x)
∣∣∣. (This is similar to

ML2DM above, but using
∣∣∣∆ZP̂ (x∗)

∣∣∣ instead of
∣∣∣∆ logZP̂ (x∗)

∣∣∣, and without weighting

the states by the the inverse of the standard deviation of logZP̃ (x∗).)

• conditional game - (CG) The student’s marginals (their geometric average over samples
drawn from his distribution over models) are used to play in a conditional game against
the teacher. Whether the teacher is trying to maximize or minimize is decided uniformly at
random before each game. The state chosen by the game is used as the next example. The
teacher employs an exact distribution (except in section 9.1, which describes experiments
with an approximate teacher).

• max var log entry - (MVLE) The state is chosen at which the student is maximally uncer-
tain about the value of logZP (x), as measured by the variance of this value over sampled
models. I.e. maxx Var(logZP̃ (x))

• uniform random - (UR) A state is chosen uniformly at random.

The first three methods (ML2DM, MDE, and CG) compare estimates from the student’s distribution
with the true distribution. The the fourth (MVLE) only uses information from the student, and fifth
method (UR) makes no reference to either.

We tested the five methods (ML2DM, MDE, CG, UR, MVLE) on four different models. The
models all fully-connected with 11 binary variables, but differ in the standard deviation β of the
log-potentials. The potentials were drawn independently as exponentiated normals: ψij(xi, xj) =
exp(βW ) where W ∼ N(0, 1). We explored values of 0.125, 1, and 3 for β. For higher values of
β, most of the probability mass is placed on a few dominant states, whereas for lower values it tends
to be spread out across many states (see Figure 6 in the Supplementary Material).

In a fully-connected binary pairwise factor graph of n variables, there are n(n+1)
2 parameters in the

potentials, thus we expect most methods to require 66 examples to learn our 11-variable models
completely.

The student’s distribution over models uses as a prior the same normal parameters from which the
true graph was generated. Using other parameters (including putting a normal prior on univari-
ate factors ψi, and on a scalar factor for the whole graph) did not produce substantially different
behavior.
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9 Results

The outcomes of running the five methods on the β = 1 model are shown in Figure 1. We have
plotted Llog

1 error of marginals (defined as
∑
xi
|logP (xi)− logQ(xi)| [1]), but L1 error gives

similar results. The student’s marginals are calculated by geometrically averaging the marginals of
256 sample models drawn from the student’s distribution, and renormalizing. Errors were averaged
over 10 random models. Using estimates from these 10 samples, we show ±1 standard deviation
error bars for CG, MDE, and ML2DM; error bars are omitted for MVLE and UR, for plot readability,
but would appear slightly wider than the others if shown. Sample counts are grouped into bins of
size four. (Plots for β = 0.125 and β = 3 are in the Supplementary Material, Figure 3)
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Figure 1: Student’s error as a function of ex-
ample count, for β = 1.
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Figure 2: Learning curves for approximate
teachers, for β = 3.

The plots demonstrate a number of consistent relationships between the five methods. MVLE is
close to UR, although usually better, and both perform relatively poorly. CG and ML2DM seem
to have the best overall performance. Although ML2DM sometimes does better than CG, they are
generally indistinguishable. For small β, CG and ML2DM are clear winners. For β = 1 or 3, they
sometimes trail MDE, but without ever being far behind. On the other hand, there are conditions
under which MDE performs significantly worse than CG.

It is perhaps surprising that CG does so well, since unlike the other methods (all except UR) it
does not require examining all entries of the unnormalized joint ZP . It is also interesting that CG
overlaps so closely with ML2DM. The CG can be seen as a greedy procedure for finding the biggest
∆ logZP̂ (x∗), while ML2DM directly maximizes a scaled version of the same quantity. We might
have predicted that this distinction would give the two methods very different behavior.

A number of other methods for choosing examples were explored but were found to perform poorly,
and are not shown in the plots. Choosing states of the factor graph in decreasing order of the true
joint distribution at each state, so that only the states of highest probability mass are shown to the
student, also performs very poorly. This is because the examples generated, while distinct, yield
degenerate constraints and so are uninformative. Choosing an example at random from the exact
distribution performs about as well as UR, as does choosing a random state from a model drawn from
the student. Choosing a state by selecting the variable and value with the largest Var(

∑
x\i

ZP̃ (x)),
conditioning the variable to that value and recursing, works about as well as MVLE. Rather than
finding the state with maximum difference in entry, as in MDE, if we were to choose the state with
maximum difference in log entry, the result is similar and sometimes better.1 The application of the
conditional game we used chooses randomly to have the teacher maximize or minimize the value.
If instead we eliminate the random choice and select each point with the teacher only maximizing
or only minimizing, then the error does not decrease - in most instances the same state is chosen
repeatedly. For the CG, we found worse performance when having the student use marginals from
a sampled ZP̃ rather than an averaged estimator ZP̂ , as well as when using arithmetic rather than
geometric averaging of the marginals. Modifying the CG so that the teacher iteratively chooses a
(variable, value) pair (i, x∗i ) maximizing P (x∗i )−Q(x∗i ) rather than P (x∗i )/Q(x∗i ) gave similar but
slightly worse results compared to the standard CG.

1XXX This will be clarified in the final version of the paper [Post-submission update: experiments showed
that the just-proposed “maximum difference in log entry” generally starts off better but ends worse than MDE.
Its performance is similar to CG.]

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

9.1 Approximate Teacher

It is interesting to ask how the student performs when the teacher’s beliefs differ from the true
distribution. We can get an idea by using the CG method with approximate message-passing algo-
rithms such as Belief Propagation (BP) and Mean Field (MF) to generate the teacher’s marginals.
(Other methods such as ML2DM are not so meaningful in this case, since they don’t make use of
marginals.) In Figure 2, we plotted the “learning curve” with the CG method for three different
choices of teacher: with exact beliefs (as before), and with beliefs calculated from the BP or MF
approximations. The Llog

1 error of BP and MF are shown by horizontal lines. For β = 3, the most
difficult model, with MF it is easy to see that the student’s performance is being held back by the
teacher, although it is possible for the student to improve on the teacher to a limited extent. For BP
the situation is apparently similar but the effect is less pronounced because of BP’s higher accuracy.
Since it is possible to achieve perfect accuracy for the student simply by choosing 66 random states
(which are almost certain to be linearly independent), we would guess that the reason for the stu-
dent’s accuracy to plateau in this experiment is that the teacher is showing the same state repeatedly.
This is indeed the case (see Figure 5 in the Supplementary Material). The student does not seem
limited by the teacher’s inaccuracy for the easiest model, β = 0.125 (Figure 4 in the Supplementary
Material).

10 Discussion

We considered the problem of learning in the inference setting, using one approximation to instruct a
second approximation, and proposed a simple learning protocol by which such an interaction could
be carried out. In this protocol, a teacher selects example states to show to a student, based on
perceived errors in the student’s approximation. We examined five methods for choosing example
states in this protocol. One, “ML2DM”, was based on an analytically-derived criterion which, al-
though intractable, is definably optimal within each round. Two were based on intuitive metrics of a
similar complexity. The fourth chose points at random, as a simple benchmark for comparison. The
last method was based on the “conditional game” (CG) of Eaton. We found that ML2DM had the
best overall performance, but that the more tractable CG method was comparable and occasionally
superior. We also examined the performance of CG in the case where the teacher is governed by
an approximation such as BP or MF rather than by exact marginals. We found that in this case the
student’s performance was reduced, but that he was still able to outperform the teacher in accuracy.

The results are interesting because the CG was designed for the purpose of determining the more
accurate of two inference algorithms. The fact that it naturally generalizes to the learning task could
be seen as a sort of validation, in an artificial or computational setting, of the use of debate in
pedagogy (e.g. Socratic dialog).

Because the protocol is so simple, it may be considered to contribute little to the larger goal of
approximate inference. Ultimately we would like to develop algorithms which can automatically
adapt to problem complexity; whether this can be done by combining the outputs of parallel threads
using the protocol we proposed (or something similar) remains to be seen. However, if one were
motivated to proceed in that direction, one might be inspired by the present work to think along
the lines of an evolutionary computation in which natural selection and sharing of information are
unified into one operation, something like the conditional game.

We end by noting that although our primary interests were computational, it is not difficult to imag-
ine using our protocol with a human teacher, in some instances. For example, consider the model
where the first variable contains the identity of the first move in a game of chess; the second variable
encodes the second move, and so on; and where ZP (x) = 1 if white wins, say, and some small
number otherwise. In this case the CG represents not the chess game itself, but a betting game
concerning the utility of each move. Upon reflection, the result of using the CG with our protocol
would be seen to be closer to the way that games like chess are actually taught, with in-depth move
by move analysis, rather than simply playing multiple games against an expert.
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Figure 3: Student’s error as a function of example count, for three values of β.
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Figure 4: Learning curves for approximate teachers, for three values of β.
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Figure 5: Unique examples as a function of examples, for approximate teachers and β = 0.125, 1
and 3.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1 10 100 1000

R
el
at
iv
e
jo
in
t

Entry rank

1/x
β=0.125
β=0.25
β=0.5
β=1
β=2
β=3

Figure 6: Zipf plots for entries in the joint distributions of six typical factor graphs, with reference
line. In other words, ZP values for each state are sorted and plotted against their rank on a log-log
scale; additionally we normalized the values so that the largest is 1. This is a useful way to visualize
the difference in the models produced by different values of β. The steeper the slope of the line, the
more probability mass is placed on a few dominant states, rather than being spread out across many
states. A line with slope -1 has been included for reference. The slope -1 is a special case, which
corresponds to a relationship P (xr) ∝ 1

r where r is the rank of the state xr. Considering r to be
continuous-valued, we note that

∫ 1

0
1
rα dr is∞ if α ≥ 1, and

∫∞
1

1
rα dr is∞ if α ≤ 1. Only when

α = 1 are both integrals infinite. This can therefore be compared to a case where probability mass
is fairly divided between likely and unlikely states. From the plot, we see that the value β = 0.5 has
a slope which is close to -1 over the first decade, but decreases thereafter.

13


	Introduction
	Related work
	Background
	Protocol
	Implementation of Synthetic Student
	Optimal Teacher
	Variable-Greedy Teacher
	Experiments
	Results
	Approximate Teacher

	Discussion
	Supplementary Material

