
Guided inference: a protocol for teaching approximations

Anonymous Author 1 Anonymous Author 2 Anonymous Author 3
Unknown Institution 1 Unknown Institution 2 Unknown Institution 3

Abstract

We propose a protocol for modeling the ex-
change of advice between two approxima-
tions to a statistical model. In our proto-
col a “student” advertises marginal proba-
bilities, and a “teacher” chooses an example
state to show to the student. The student
observes the model’s unnormalized joint dis-
tribution at the new state and updates his
beliefs. This interaction is repeated over a
number of turns. We present results from ex-
periments evaluating the ways in which the
teacher might choose states to show the stu-
dent.

1 Introduction

We often approach approximate inference, as with
many other NP-hard problems, using algorithms which
have a parallelizable structure. In designing such al-
gorithms, we must specify how a problem should be
divided into multiple sub-problems, and how the re-
sults should later be combined. In approximate in-
ference, for instance with message passing methods,
this subdivision is performed according to the struc-
ture of the model; whereas with sampling methods it
is straightforward to execute multiple sampling runs in
parallel and then average the results. A more flexible
and intelligent algorithm might approach this subdivi-
sion by devoting separate threads to compiling approx-
imate representations of a model, which could then be
queried in various ways, for example to elicit condi-
tioned marginals. Merging these separate represen-
tations would require some way of resolving their in-
evitable disagreements. This would in turn depend on
a protocol by which one approximation could exchange
information with another, for example about difficult

Preliminary work. Under review by AISTATS 2011. Do
not distribute.

areas of the model. In this paper we propose such a
protocol. To illustrate its application, we perform ex-
periments measuring the effectiveness of different ways
of selecting which information should be transmitted.

One might imagine a number of ways in which this
cooperative interaction could take place, but we use
a simple scenario, in which a “teacher” shows a “stu-
dent” examples consisting of states (full assignments
of all the variables) of the model. His choice of these
examples can be based on the student’s marginals, to
which he has access. We shall call this kind of inter-
action guided inference.

In anticipation of the results of our experiments, we
shall consider these interactions as one potential ap-
plication of the conditional game, proposed recently
(Eaton, 2011), which is a procedure for comparing the
accuracy of two approximations to a model. If the
purpose of the conditional game is to be a protocol by
which approximations can “argue” about areas of dis-
agreement, the purpose of guided inference could be
seen as a protocol through which these disagreements
can be resolved. We find that the conditional game is
useful for the second task as well.

2 Prior work

We relate our present work to previous research in ma-
chine learning.

2.1 Active learning

The problem of learning about a model by observing
samples from some or all of its variables is common to
most branches of machine learning. When some prop-
erty of these samples is specified prior to sampling by
the learner, in order to optimize the acquisition of in-
formation, then the process is called “active learning”
(Tong, 2001) (two related topics are “query learning”
and “optimal experiment design”). Active learning is
perhaps the closest existing body of research to what
we are calling “guided inference”. As with other forms
of learning, active learning can be employed to learn
the parameters or structure of a model. Typically, an

Manuscript under review by AISTATS 2011

active learner is allowed to specify values of some sub-
set of the variables in a model, and the rest of the vari-
ables are then sampled from the true distribution con-
ditioned on these assignments. Alternatively, a learner
may have access to a set of unlabeled data points, from
which he is allowed to select examples whose labels
should be determined by an oracle. The learner pre-
sumably chooses these examples in such a way as to
optimize some measure of his expected future accuracy
in predicting labels for the rest of the data. Active
learning can be seen as a way of modeling a scientist,
who tries to learn about a system of interest by per-
forming a series of experiments in which he constrains
some aspects of the system’s behavior and measures
the effects of such interventions on other parts of the
system.

Guided inference can be seen as a kind of active learn-
ing for inference. In the framework of active learning,
a learner is trying to learn about a model given data
points which are partly specified by the learner and
partly drawn at random from a “true distribution”. In
guided inference, by contrast, the model is considered
to be fully specified and the learner is trying to learn
how to improve his approximation to this model. He
does this by receiving “interesting” states of the model
from a “teacher” whose approximation he wishes to
emulate. The teacher of guided inference corresponds
to the “true distribution” of active learning. Whereas
the states in active learning are sampled partly at ran-
dom, and this randomness is used to learn about the
probability mass assigned by the model to different
variable values, in guided inference there is not neces-
sarily any randomness in the states, and the behavior
of the model at the example states is inferred from the
unnormalized joint rather than from any empirical dis-
tribution. In contrast to the sampling basis of active
learning, guided inference is more similar to “curve fit-
ting”, where the values of an unknown function (the
model’s unnormalized joint) must be interpolated by a
learner. What separates guided inference from fitting
is its origins in probabilistic modeling: of interest is
not the values of the function itself but their normal-
ized sums, corresponding to variable marginals. This
idea of integrating a probability distribution by fitting
the density function to a set of samples has been ex-
plored before in Rasmussen and Ghahramani (2003),
but their approach is more suited to low-dimensional,
continuous integrands and does not address the prob-
lem of how to best choose samples (assuming them to
be drawn randomly).

One point of similarity between the new guided infer-
ence framework and existing work in active learning is
the use of a cost function to guide the choice of new
states. In active learning, the learner has a sense of

the areas of the model about which he would like to
be more accurate. His preferences can be expressed in
terms of an expected gain for each possible query he
can make - perhaps he would like to minimize some
form of entropy in his beliefs about the model. In
guided inference, the teacher is trying to improve some
measure of the student’s error, and might use one of
a number of cost functions in deciding which state to
show the student at each turn (for examples, see the
experiments in section 5).

2.2 Conditional games

The conditional game (CG) (Eaton, 2011) is a deter-
ministic protocol which can be used to identify the
more accurate of two approximations. It takes the
form of a two-player zero-sum game, and its structure
can be compared to that of a debate or a legal trial.
Since the CG is played between two approximations
and yields a state of the model at its conclusion, it
can be used by the teacher to choose example states
in the guided inference setting. In our experiments,
we will find that the CG is effective for this purpose.

Here we give a brief review of the CG. Given a model
with n variables, defined by a factor graph as in equa-
tion 3 below, play alternates between the “marginal
player” (MP) and the “conditional player” (CP) over a
total of n turns. At turn t the MP expresses marginals
conditioned on the variable values previously selected
by CP, say Q(. . . |x∗i1:t−1

). The CP then chooses a new
variable index it and value x∗it . The variable xit is
fixed to take value xit = x∗it for the rest of the game.
Play finishes when the variables are all fixed, giving a
complete assignment x = x∗. A quantity which we will
call the “value” of the game is then defined in terms
of x∗ and Q:

V = log

∏n
t=1Q(x∗it |x

∗
i1:t−1

)∏
α ψα(x∗α)

(1)

In a given game, CP will be trying to minimize V
and MP to maximize it, or vice-versa. As long as the
players have opposite goals, the game leads to sensible
strategies. In particular, the optimal strategy of MP is
to play exact marginals, so that V = − logZ. Given an
approximation R which CP trusts, a greedy strategy
(for CP minimizing V) is to play

(it, x
∗
it) = argmin

(j,xj)

j /∈i1:t−1

Q(xj |x∗i1:t−1
)

R(xj |x∗i1:t−1
)

(2)

If CP is trying to maximize V , then replace argmin
with argmax above. In our experiments, the teacher
plays as CP using this greedy strategy.

Manuscript under review by AISTATS 2011

3 Guided inference

3.1 Preliminaries

We review our definition of approximate inference. We
assume that we are given a model specified by a “factor
graph”, which is a general representation for statistical
models. A factor graph defines a distribution over n
variables x := (x1, . . . , xn) as a normalized product of
non-negative factors ψα

P (x) =
1

Z

∏
α

ψα(xα) (3)

where α indexes a collection of sets of variables and
Z is a normalizing constant called the “partition func-
tion”. We will call ZP (x) =

∏
α ψα(xα) the unnor-

malized joint (at state x). Note that ZP is always
tractable. The problem of approximate inference is to
estimate the marginals of the model:

P (xi) =
1

Z

∑
x\i

∏
α

ψα(xα) (4)

3.2 Protocol

One of the classical ways in which approximate infer-
ence can fail to produce good marginals is by failing to
find all of the modes - areas of high probability - of a
distribution. This is especially true for Markov Chain
Monte Carlo (MCMC) methods, which may have dif-
ficulty in moving from one mode to another, but it
is also true for deterministic methods such as Belief
Propagation, whose accuracy seems to deteriorate on
distributions with three or more modes. With these
observations in mind, we designed the interaction cy-
cle of guided inference to pass single states of the model
x∗ from teacher to student. It is easy to imagine using
such a protocol to transfer knowledge about the modes
of a distribution between two approximations, since
each mode can be identified by one or more states.

Teacher

(x∗, ZP (x∗))
−−−−−−−−−−→

Q←−−−−−−−−−−
Student

The interaction cycle is formalized in the following
pseudo-code.

Algorithm 1. Guided inference

Repeat for an arbitrary number of turns:

At turn m:

1. Student proposes a distribution Q based on the ex-
ample states and unnormalized joints he has seen
so far: {(x∗(i), ZP (x∗(i)))}i=1:m−1

2. Teacher selects a new example x∗(m) (perhaps in
response to errors in the student’s distribution)

Our model of interaction is based on the key simplify-
ing assumption that the only information which goes
from the teacher to the student consists of examples
of states of the model. The student has access to un-
normalized joint probabilities ZP , but only evaluates
them at the states recommended by the teacher; hence
it is also possible to imagine the values ZP (x∗) as be-
ing transmitted by the teacher together with the states
x∗, as in the above diagram. This behavior is meant
to capture the extreme of laziness, where the student
knows the model specification, but not wanting to de-
cide where to start with his analysis, only performs
computations when prompted by receiving example
states from the teacher. Importantly, the student does
not get to know any of the teacher’s opinions about the
marginals or partition function. This means that the
student is not limited by the accuracy of the teacher
(and could learn just as easily from multiple teachers
as from one).

4 Implementation

In a practical application of the guided inference
framework, the “teacher” and “student” might both
be approximations, and the student would be an ap-
proximation Q of a kind which can be parametrized
by a set of states so that he learns to be more accu-
rate with every state (example) shown to him by the
teacher. But we do not yet concern ourselves with fig-
uring out how an approximate student should make
the best use of these examples for learning. Here we
restrict our attention to the question of how the teacher
should choose examples to present to the student. We
are limiting ourselves, in other words, to investigating
one half of the guided inference problem. A practical
application of the conclusions we derive from our ex-
periments would also require a solution to the second
half, namely, a specification of the student’s approxi-
mation. We leave this question for future work.

Now, if we were to experiment in a setting with an
approximate Q, then it would be difficult to know
whether to credit some property of the system to the
teacher’s or the student’s approximate inference algo-
rithm (which we are not particularly interested in) or
to the teacher’s protocol for choosing example points
to present to the student (which is what we are inter-
ested in). In order to simplify the interpretation of our
results, in our experiments we use two exact inference
algorithms. The inference of the “teacher” is simply
exact, while the student performs “exact” inference on
a simple distribution over models, conditioned to agree
with the observations of the unnormalized joint which

Manuscript under review by AISTATS 2011

the teacher has shown to him.

A consequence of the exploratory nature of this re-
search is that we are constrained to study small models
on which exact inference is tractable. Our expectation
is that the results will generalize to larger models as
well.

4.1 Distributions over models

We now describe how the “exact” student of our ex-
periments maintains and reasons about a distribution
over models, given a set of example entries from the
unnormalized joint distribution ZP (x) =

∏
α ψα(xα).

We will restrict ourselves to representing distributions
over the potentials of fully connected binary pairwise
factor graphs. (Thus, we do not consider the prob-
lem of reasoning about models of differing structure,
e.g. by averaging over multiple hypotheses which spec-
ify different sized factors or different sparse connectiv-
ity.) We have the student represent the potentials of
the graph as exponentials of normal random variables,
ψij(xi, xj) = exp(βW) where W ∼ N(0, 1). This is
a conventional way of generating random models for
experiments in approximate inference.

i

j

ψij(xi, xj)

(5)

Initially the potentials are believed by the student
to be sampled independently, but when he incorpo-
rates his set of observations of the unnormalized joint
{(x∗(i), ZP (x∗(i)))}i=1:m−1, then correlations will be
introduced in his beliefs. If he represents the log-
potentials using a multivariate normal distribution,
then these correlations can be represented in a covari-
ance matrix, and after each observation the posterior
of his beliefs will be in the same class as the prior (i.e.,
it is a conjugate prior). The observations

z∗ = ZP (x∗) (6)

are equivalent to

z∗ =
∏
jk

ψjk(x∗jk) (7)

=⇒ log z∗ =
∑
jk

logψjk(x∗jk) (8)

The quantities logψjk(xj , xk) are distributed accord-
ing to a multivariate normal distribution with mean µ

and variance Σ (indexed by (j, k > j, xjk) and initial-
ized to β2I) so this is a statement that some subset of
the dimensions of this normal distribution should have
a certain sum (namely log z). A set of such constraints
is in turn a special case of a linear constraint, say

B · y = v (9)

on draws y from a multivariate normal, where B is a
matrix and v a vector. More specifically, in our exper-
iments, y is indexed by (j, k > j, xj , xk) and represents
a vector of log potentials specifying the whole model,
while B contains entries which are 0 or 1 according to
whether a particular potential entry contributes to a
given state, and v is a column vector of the log unnor-
malized joint entries corresponding to each example
x∗(i):

vi = log z∗(i) = logZP (x∗(i)) (10)

Conditioning on this linear constraint is equivalent to
transforming the mean and the variance of the multi-
variate normal distribution:

µ′ = µ− ΣBT (BΣBT)−1(Bµ− v) (11)

Σ′ = Σ− ΣBT (BΣBT)−1BΣ (12)

Although we were able to discover this analytic form
for the updates to the distribution parameters in this
case, there appears to be no simple analytic expression
for the expected marginals of factor graphs drawn from
the distribution. So, when such quantities as expected
marginals are needed, we simply draw many sample
graphs, compute their marginals, and average together
the results. This averaging seems to be more sensible
in the log domain since some marginals may be very
close to 0 or 1. Averaging sampled marginals in the log
domain is equivalent to taking the geometric average
and renormalizing.

4.2 Optimal selection criteria

Below, we write ZP̃ (x) for a random variable repre-
senting a draw from the student’s beliefs about ZP (x),
while ZP̂ (x) represents an estimator of ZP (x). We use
a geometric average unless stated otherwise: ZP̂ (x) ≡
expE[logZP̃ (x)].

We can derive an analytic expression for the change in
µ when a new example x∗ is seen. From equation 11
we have

∆µ = Σ∆BT (∆BΣ∆BT)−1∆ logZP̂ (x∗) (13)

where ∆B encodes the new constraint z∗ = ZP (x∗)
and ∆ logZP̂ (x∗) = Bµ − v is the difference between
the old and new estimates of ZP (x∗). Note that
∆BΣ∆BT is just the variance of logZP̃ (x∗). If Σ

Manuscript under review by AISTATS 2011

is initialized to a multiple of the identity matrix β2I,
encoding a spherical normal distribution, then β−2Σ
will be a projection and we will have ΣΣ = β2Σ. This
allows us to write a simple expression for the L2 norm
of ∆µ, which we obtain by multiplying equation 13 by
its transpose and taking the square root:

||∆µ||2 = β

∣∣∣∆ logZP̂ (x∗)
∣∣∣√

Var(logZP̃ (x∗))
(14)

Since each update brings µ closer to the parameters of
the true model, this equation tells us how to find up-
dates which will maximize one measure of the speed
of convergence of the student’s representation: We
should choose states x∗ for which the error in his point
estimate of logZP (x∗), relative to the standard devi-
ation of his beliefs, is greatest.

5 Experiments

In our experiments, we compare five different ways for
the teacher to choose example states at which to up-
date the student’s distribution over potentials.

• max L2 delta µ - (ML2DM) Chooses states
which maximize ||∆µ||2 according to equation 14.

• max diff entry - (MDE) At each turn, all states
are examined and the state is chosen at which the
entry in the student’s unnormalized joint estimate
is most different from the teacher’s (exact) un-

normalized joint, e.g. argmaxx

∣∣∣ZP (x)− ZP̂ (x)
∣∣∣.

This is similar to ML2DM above, but using∣∣∣∆ZP̂ (x∗)
∣∣∣ instead of

∣∣∣∆ logZP̂ (x∗)
∣∣∣, and with-

out weighting the states by the the inverse of the
standard deviation of logZP̃ (x∗)).

• conditional game - (CG) The student’s
marginals (their geometric average, calculated by
sampling) are used to play as MP in a conditional
game against the teacher’s CP. Whether CP is
trying to maximize or minimize the game outcome
is decided uniformly at random before each game.
The state chosen by the game is used as the next
example. The teacher uses an exact distribution,
except in section 6.1 which describes experiments
with an approximate teacher.

• max var log entry - (MVLE) The state is cho-
sen at which the student is maximally uncertain
about the value of logZP (x), as measured by
the variance of this value over sampled models.
I.e. maxx Var(logZP̃ (x))

• uniform random - (UR) A state is chosen uni-
formly at random.

The first three methods (ML2DM, MDE, and CG)
compare estimates from the student’s distribution with
the true distribution. The the fourth (MVLE) only
uses information from the student, and fifth method
(UR) makes no reference to either.

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1 10 100 1000

R
el
at
iv
e
jo
in
t

Entry rank

1/x
β=0.125
β=0.25
β=0.5
β=1
β=2
β=3

Figure 1: Zipf plots for entries in the joint distributions
of six typical factor graphs, with reference line

We tested the five methods (ML2DM, MDE, CG, UR,
MVLE) on four different models, all with 11 variables
but differing in the variance β of the log-potentials. We
explored values of 0.125, 1, and 3 for β. One useful way
to visualize the difference in the models produced by
these values of β is by making a Zipf plot of the entries
in the joint distribution (this means that the entries for
each state are sorted and plotted against their rank on
a log-log scale; additionally we normalized the values
so that the largest is 1). See Figure 1. The steeper the
slope of the line, the more probability mass is placed
on a few dominant states, rather than being spread
out across many states. A line with slope -1 has been
included for reference.1

For a fully-connected binary pairwise factor graph of

n variables, there are n(n+1)
2 parameters in the poten-

tials, thus we expect most methods to require 66 ex-
amples to learn our 11-variable example models com-
pletely.

The student’s distribution over models uses as a prior
the same normal parameters from which the true graph
was generated. Using other parameters (including
putting a normal prior on univariate factors ψi, and

1 The slope -1 is a special case, which corresponds to
a relationship P (xr) ∝ 1

r
where r is the rank of the state

xr. Considering r to be continuous-valued, we note that∫ 1

0
1
rα

dr is ∞ if α ≥ 1, and
∫∞
1

1
rα

dr is ∞ if α ≤ 1. Only
when α = 1 are both integrals infinite. This can therefore
be compared to a case where probability mass is fairly di-
vided between likely and unlikely states. From the plot,
we see that the value β = 0.5 has a slope which is close to
-1 over the first decade, but decreases thereafter.

Manuscript under review by AISTATS 2011

on a scalar factor for the whole graph) did not pro-
duce substantially different behavior.

6 Results

The outcomes of running the five methods on each
model are shown in Figure 2. We have plotted Llog

1

error, but L1 error gives similar results. The student’s
marginals are calculated by geometrically averaging
the marginals of 256 models drawn from the student’s
distribution, and renormalizing.

0

0.05

0.1

0.15

0.2

0.25

0 10 20 30 40 50 60

L
lo

g
1

er
ro
r

Examples

β = 0.125 CG
MDE

ML2DM
MVLE

UR

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50 60

L
lo

g
1

er
ro
r

Examples

β = 1 CG
MDE

ML2DM
MVLE

UR

0

1

2

3

4

5

6

7

8

9

0 10 20 30 40 50 60

L
lo

g
1

er
ro
r

Examples

β = 3 CG
MDE

ML2DM
MVLE

UR

Figure 2: Student’s error as a function of exam-
ple count, for three values of β. Sample counts are
grouped into bins of size four. For each β, 10 random
models were generated. For each interaction method
and bin, a box with ±1 standard deviation in log error
is plotted, showing the variation in error over these
models.

The plots demonstrate a number of consistent relation-
ships between the five methods. MVLE is close to UR,
although usually better, and both perform relatively
poorly. CG and ML2DM seem to have the best overall
performance. Although ML2DM sometimes does bet-
ter than CG, they are generally indistinguishable. For
small β, CG and ML2DM are clear winners. For β = 1
or 3, they sometimes trail MDE, but without ever be-
ing far behind. On the other hand, there are conditions
under which MDE performs significantly worse.

It is perhaps surprising that CG does so well, since
most of the other methods (all except UR) require
examining every entry of the unnormalized joint ZP
and would be prohibitively expensive to implement on
large graphs, except in some heuristic form. CG only
requires conditioned marginals, which may be easily
obtained from most approximations.

It is also interesting that CG overlaps so closely with
ML2DM. The CG can be seen as a greedy procedure
for finding the biggest ∆ logZP̂ (x∗), while ML2DM
directly maximizes a scaled version of the same quan-
tity. The CG only looks at marginals, while ML2DM
examines every state; we might have predicted that
this distinction would give the two methods very dif-
ferent behavior, but apparently it doesn’t.

A number of other methods for choosing examples
were explored but were found to perform poorly, and
are not shown in the plots. The application of the con-
ditional game we used chooses randomly to have CP
maximize or minimize the value. If instead we elimi-
nate the random choice and select each point with CP
only maximizing or only minimizing, then the error
does not decrease (in some instances the same state
is chosen repeatedly). Choosing states of the factor
graph in decreasing order of the true joint distribu-
tion at each state, so that only the states of highest
probability mass are shown to the student, performs
very poorly. Presumably this is because the examples
generated, while distinct, yield degenerate constraints
and so are uninformative. Choosing an example at
random from the exact distribution performs about
as well as UR, as does choosing a random state from
a model drawn from the student. Choosing a state
by selecting the variable and value with the largest
Var(

∑
x\i

ZP̃ (x)), conditioning the variable to that

value and recursing, works about as well as MVLE.
For the CG, having the student’s MP use marginals
from a sampled ZP̃ rather than an averaged estimator
ZP̂ gave worse performance, as did using arithmetic
rather than geometric averaging of the marginals.

Manuscript under review by AISTATS 2011

6.1 Approximate teacher

It is interesting to ask how the CG performs when the
teacher’s beliefs differ from the true distribution. In
Figure 3, we plotted the “learning curve” with the CG
method for three different choices of teacher: with ex-
act beliefs (as before), and with beliefs calculated from
the Belief Propagation (BP) or Mean Field (MF) ap-

proximations. The Llog
1 error of BP and MF are shown

by horizontal lines. For the easiest model, β = 0.125,
the teacher’s inaccuracy seems to have no adverse ef-
fect. For β = 3, the most difficult model, with MF
it is easy to see that the student’s performance is be-
ing held back by the teacher, although it is possible
for the student to improve on the teacher to a limited
extent. For BP the situation is apparently similar but
the effect is less pronounced because of BP’s higher ac-
curacy. Since it is possible to achieve perfect accuracy
for the student simply by choosing 66 random states
(which are almost certain to be linearly independent),
we would guess that the reason for the student’s accu-
racy to plateau in this experiment is that the teacher is
showing the same state repeatedly. This is confirmed
by the plot of Figure 4, which shows the number of
unique states as a function of round.

7 Discussion and future work

In summary of the above results, we would say that
the CG method seems to be the best approach for
choosing data points for guided inference. This might
be surprising, considering the independent purpose for
which it was designed. We were unable to find a
method which does uniformly better, even including
generally intractable methods which required exam-
ining every state in the model. Although there may
be other superior methods which we neglected to con-
sider, the approaches we tried were appropriate and
well-motivated. One might be tempted to conclude
that the most efficient mode of interaction between a
teacher and student, at least in the protocol we have
defined, is that of having a debate.

The present investigations were to some extent mo-
tivated by the hope of eventually designing an ap-
proximate inference algorithm based on a simulated
natural selection. Such an algorithm would use coop-
eration and competition between candidate approxi-
mations to try to “evolve” approximations of higher
accuracy. When one imagines a context for interac-
tions in which approximations are made to compete
using games, and also to cooperate by sharing infor-
mation, the question arises of the proper relationship
between these two modes of interaction: Is it (a) pos-
sible for an approximation to do well in competitions
as a result of having hidden knowledge which he never

0

0.05

0.1

0.15

0.2

0.25

0 10 20 30 40 50 60

L
lo

g
1

er
ro
r

Examples

CG with approximate teacher, β = 0.125 Exact
BP
MF

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60
L

lo
g

1
er
ro
r

Examples

CG with approximate teacher, β = 1 Exact
BP
MF

0

1

2

3

4

5

6

7

8

9

0 10 20 30 40 50 60

L
lo

g
1

er
ro
r

Examples

CG with approximate teacher, β = 3 Exact
BP
MF

Figure 3: Learning curves for approximate teachers,
for three values of β. As in Figure 2, but with bins of
size 2.

has to share with his colleagues? Or (b) does the ex-
pertise which allows one approximation to outperform
another get revealed as soon as we arrange a compe-
tition between them? In case (b), our task of deriving
a useful interaction framework might be simplified by
the sufficiency of a single form of interaction to accom-
plish the goals of both (competitively) comparing and
(cooperatively) educating approximate inference algo-
rithms. In case (b) there would also be an intrinsic mo-
tive for each party to participate in such interactions
- the winner receives the prestige of winning, while
the loser receives useful training. It is possible for an
evolutionary framework to provide these motives artifi-
cially, by some deliberate innovation of the design, but
we would prefer them to arise as a natural consequence
of the interaction itself. We were pleased to confirm

Manuscript under review by AISTATS 2011

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60

U
n
iq
u
e
ex
am

p
le
s

Examples

CG with approximate teacher, β = 1Exact
BP
MF

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60

U
n
iq
u
e
ex
am

p
le
s

Examples

CG with approximate teacher, β = 3Exact
BP
MF

Figure 4: Unique examples as a function of examples,
for approximate teachers and β = 1 and 3. Not shown
is β = 0.125, where all examples were unique.

through the experiments presented here that, at least
to good approximation, the second case indeed holds
- the same competitive interaction (i.e., the CG) effi-
ciently accomplishes both comparison and education.
But it remains to be seen how one should best utilize
the consequences of this principle in an algorithm.

There are some discernible directions in which this re-
search could be extended. Apparently, for our ideas
to become practically useful, at some point it will
be necessary to replace the intractable exact infer-
ence methods used in these experiments with a suit-
able approximate inference algorithm, one which can
be parametrized by states of the model so that it
can “learn” from a teacher. As with Rasmussen and
Ghahramani (2003), our problem may also benefit
from a kernel-based method. It is interesting to ask
what the appropriate kernel should be.

Additionally, we would like to be able to modify the
protocol to work on subsets of the variables, so that
multiple guided-inference-style interactions could be
conducted in parallel on separate regions of a large
graph. A desire for a similar modification - to adapt
the the ideas of the CG so that only a subset of vari-
ables must be traversed in a single game - was voiced
in Eaton (2011). Apparently neither design goal is
possible without losing much of the original simplic-
ity. The CG is based on the fact that we may easily

evaluate the unnormalized joint ZP . To adapt it to
use only a partial assignment of the variables, xC for
C ⊆ {1 . . . n}, we would need a way to estimate the
equivalent “marginal” quantity, say ZPC(xC). This
could easily be provided by a third approximation (for
instance using the logZ estimate of a conditioned BP
or MF), but would then make the game “relative”
to that approximation. Similarly, a “guided infer-
ence” protocol in such a partial framework, if it uses a
third approximation to provide the (partial) ZP values
which had in our treatment been directly computable,
would necessarily lose some desirable properties: the
student’s accuracy would be limited by the accuracy
of this third party, even if not by the accuracy of the
teacher. Thus additional complexities arise on the way
to a practical application of both the CG and guided-
inference ideas. However, a comparison to the real
world suggests that introducing a third approximation
is the right approach: in a trial, it would be analogous
to the role of a judge, the traditional means by which
the boundaries of relevance are established. Without
the shared reservoir of “common sense” provided by
a judge, a fair trial, to which the CG can be seen
as vaguely analogous, would be impractical. In the
guided-inference framework, because there is no “win-
ner” or “loser”, the need for such a third party is not
so clear. To make do with “partial” states, one still
needs to construct a “marginalized” version of ZP ,
which must be approximate. But these estimates could
conceivably be provided by the student or the teacher
himself, although in both cases we still sacrifice some
desirable properties of the protocol. Understanding
how to fit together all of the above ideas to produce a
practical approximate inference algorithm is likely to
be a challenging project. But the findings of this pa-
per might encourage us to look for a solution in which
multiple design goals - the ability to simulate both co-
operation and competition - are satisfied by the same
design elements.

Acknowledgments

(omitted from reviewer copy)

References

Eaton, F. (2011). A conditional game for comparing
approximations. In Proceedings of the Fourteenth
International Conference on Artificial Intelligence
and Statistics, volume 15.

Rasmussen, C. and Ghahramani, Z. (2003). Bayesian
monte carlo. Advances in neural information pro-
cessing systems, pages 505–512.

Tong, S. (2001). Active learning: theory and applica-
tions. PhD thesis, Stanford University.

	Introduction
	Prior work
	Active learning
	Conditional games

	Guided inference
	Preliminaries
	Protocol

	Implementation
	Distributions over models
	Optimal selection criteria

	Experiments
	Results
	Approximate teacher

	Discussion and future work

