
Statically Typed Linear Algebra in Haskell

Frederik Eaton
frederik@ofb.net

ABSTRACT
Many numerical algorithms are specified in terms of operations on
vectors and matrices. Matrix operations can be executed extremely
efficiently using specialized linear algebra kernels in libraries such
as ATLAS or LAPACK. The resulting programs can be orders of
magnitude faster than naive implementations in C, and this is one
reason why matrix computation interpreters such at Matlab and Oc-
tave are popular in scientific computing. However, the process of
expressing an algorithm in terms of matrices can be error-prone.
Typical matrix languages are weakly-typed. If we could expose
certain properties of operands to a type system, so that their consis-
tency could be statically verified by a type checker, then we would
be able to catch many common errors at compile time. We call
this idea “strongly typed linear algebra” and describe a prototype
implementation in which dimensions are exposed to the type sys-
tem, which is based on Alberto Ruiz’s GSLHaskell [Ruiz(2005)]
and uses techniques from Kiselyov and Shan’s “Implicit Configu-
rations” [Kiselyov and Shan(2004)].

A great advantage of Matlab is the ability it offers scientists to
manipulate and inspect numerical objects interactively. We show
how to make our library useful for interactive use, using Template
Haskell.

Next, we implement a medium-sized machine learning algorithm
using our library, and compare it to a similar implementation in Oc-
tave. Drawing from this experience, we suggest Haskell language
features which might improve the library’s usability. Perhaps sur-
prisingly, we conclude that performance is not a problem area for
Haskell. The Haskell version of the program, which takes several
minutes to run, is almost twice as fast as the Octave version,and
probably comparable to the speed of Matlab.

A basic understanding of Haskell is assumed.

Categories and Subject Descriptors: D.1.1 [Programming
Techniques]: Applicative (Functional) Programming

General Terms: Design, Languages

Keywords: Linear algebra; implicit parameters; higher-rank poly-
morphism; type classes

Copyright 2006 Frederik Eaton.

1. INTRODUCTION
Many numerical algorithms are specified in terms of matrices

and vectors. In addition, a common numerical programming tech-
nique is to express iterative algorithms in terms of operations on
vectors and matrices. One class of transformations might turn the
loop

for i = 1 . .n
a [i] = f (b [i])

end

into

a = F (b)

whereF is a vectorized version off ; in another instance we might
convert

for i = 1 . .n
a [i] = 0;
for j = 1 . .m

a [i] + = w [i, j] · b [j]
end

end

into a matrix-vector multiplicationa = W × b. Because linear al-
gebra has proven to be a very general framework, highly optimized
libraries have been written to perform common linear algebra oper-
ations as efficiently as possible, such as ATLAS (implementing the
standard BLAS interface) and LAPACK.

The source of the speedup which these libraries accomplish usu-
ally comes from better cache utilization - by breaking a matrix
down into blocks and processing it block-by-block, where each
block is small enough to fit in the entire L1 cache. In ATLAS, the
optimal block-size as well as many other algorithm parameters are
determined automatically, during compilation of the library, so the
resulting object code can be specially optimized to a given architec-
ture. In addition, the libraries may use a CPU’s vector instructions.
Neither of these optimizations is something that a C compiler can
very easily accomplish generically. Therefore a naively-written C
program can run orders of magnitude more slowly than the corre-
sponding ATLAS routines.

Linear algebra libraries thus enjoy widespread use in the scien-
tific community. They are usually accessed via high-level program-
ming languages such as Matlab’s M-code. However, such lan-
guages and even much more sophisticated computer algebra sys-
tems are weakly typed. Even in strongly typed languages, types
for linear algebra objects are usually limited to distinguishing be-
tween vectors and matrices, and specifying element type, for in-
stanceVector(Real) or Matrix(Complex).

We think that if object dimensions were exposed to the type sys-
tem, then it would be possible to catch a large number of common
errors at compile time. For instance, matrices can generally only

be multiplied in a certain order - in a matrix multiplicationA× B,
the number of columns ofA matches the number of rows ofB. But
in Matlab and its clones1, if matrices are multiplied in the wrong
order, the error is only caught at runtime. If the type systemkept
track of which dimensions matched which, such a mistake would
have been detected at compile time, and what is generally called
“operand conformability” could be statically guaranteed.We will
give the name “strongly typed linear algebra” to any tool which
makes such static guarantees possible. (Of course, not all mistakes
cause operand conformability errors. For instance, a square matrix
has the same dimensions as its inverse, so forgetting to invert a ma-
trix will not be noticed by a strongly typed linear algebra system.)

We explore the implementation of a strongly typed linear algebra
system in the functional programming language Haskell. To the
best of our knowledge, it is the first such system to exist.

2. DIMENSIONS AS TYPES
The main idea is to encode vector dimensions as types. Dimen-

sions are types which are instances of special class,Dom, and in-
dices are members of those types. The classDomhas methods for
complete enumeration of index values, so that given a type which
is an instance ofDom, we can list the entire range of values which
that type can (legally) have.

class(Bounded a, Enum a, Ix a, Eq a, Show a)⇒ Dom a
where

domain:: [a]
domainSize:: a→ Int
...

Now, for instance, we can define a function with the following
type

vector:: Dom a⇒ (a→ e)→ V e a

to construct vectors. HereV e arepresents a vector with element
typee and index typea. The definition ofvectorwill fill in all of
the elements of the result by calling the given function on every
value of typea, which is just the list returned bydomain.

We guarantee that two dimensions match by using the same type
variable for each of them. (Note that this is a stronger constraint
than requiring that the vectors have the same size, because two dif-
ferent domain types may have the same number of elements by
coincidence. However, in such a case we usually won’t want the
dimensions to match, so requiring the types to be the same is ap-
propriate)

For example, the dot product function could have the following
type:

(Num e, Dom a)⇒ V e a→ V e a→ e

Because both arguments share the same dimensions type, the vec-
tors are guaranteed to be the same length.

As another example, consider the case when we want to extract
a subset of a vector (here, “(!) ::V e a→ a→ e” is the subscripting
operation):

slice:: (Dom a, Dom b)⇒ (b→ a)→ V e a→ V e b
slice v f = vector(λ i → v ! f i)

For each indexi of the result vector, the given function is applied,
yielding an indexf (i) in the source vector. The element at indexi
1Notably Octave, which is developed under the GPL and is mostly
compatible with Matlab; also, Scilab is a mostly-free and has
syntax similar to Matlab. We only use Octave for experiments
- general benchmarks comparing it to Matlab are here:http:
//www.sciviews.org/benchmark/index.html Octave seems to be
about two or three times slower than Matlab, but it is constantly
improving.

of the result is taken to be the element at indexf (i) in the source.
Essentially, vectors are functions from indices to elements, the in-
dex type can be seen as occupying a contravariant position2; this is
why the function argument ofslice is b→ a rather thana→ b.

However, we can also think of a “vector” in the sense of linear
algebra, i.e. one whose elements are taken from a field (also for
a module, whose elements are taken from a ring), as representing
a member of the dual space, which consists of linear maps from
ordinary vectors to members of the field (or ring). In the dualspace,
the index type holds a covariant position. Thus, when the element
type is a number, we have another useful transformation, which
complementsslice.

margin:: (Num e, Dom a, Dom b)⇒
(a→ b)→ V e a→ V e b

The effect of margin is to map elements of the input according to
the supplied function. Where multiple input index values map to-
gether, the elements at those indices are added; when there is an
output index which is not in the range of the supplied function, its
element is set to zero. The name comes from probability theory,
from the term “marginal distribution”.

2.1 Matrices
We represent matrices as vectors which are indexed by a pair:

V e (a, b)

This is a special case of a vector - ifa and b are instances of
Dom, then (a, b) is also an instance:

instance(Dom a, Dom b)⇒ Dom (a, b) where
...

Pairs are enumerated in lexicographic order, e.g.:

[(0, 0), (0, 1), (0, 2), ..., (1, 0), (1, 1), ...]

Matrix multiplication has the following signature:3

(><>) :: V e (a, b)→ V e (b, c)→ V e (a, c)

We define other common operations with reference to Matlab’sM-
code syntax:

trace:: Dom a⇒ V e (a, a)→ e -- matrix trace
diag :: Dom a⇒ V a→ V (a, a) -- diagonal matrix
eye:: Dom a⇒ V e (a, a) -- identity matrix
ones, zeros:: Dom a⇒ V e a -- vector of ones or zeros

etc. Note that the last three functions don’t take any arguments,
whereas in Matlab they each take two arguments. The reason is
that in Matlab those arguments serve to specify the dimension of
the result, but here the result dimensions are inferred fromcontext.
This often leads to more concise code, which is moreover closer
to typical mathematical notation; however, occasionally we need to
add type signatures to resolve ambiguities:

slowSize m= trace (ones‘asTypeOf‘ m)

2.2 Reflecting Values
We haven’t yet said anything about how domain types are cre-

ated.
Consider the task of writing a function,listVec, which creates a

vector from a list of elements. The size of the list is arbitrary; we
2In a function type, the return value of a function is a covariant po-
sition; any of its arguments are contravariant positions. More gen-
erally, a position is contravariant if an odd number of its containing
positions are arguments of functions, and covariant otherwise. So
the position ofa is covariant in (a→ r) → r, and contravariant in
a→ r or k→ a→ r ≡ k→ (a→ r), and covariant ina andr → a.
3Since matrix multiplication is not commutative, we have chosen
to use an asymmetric operator.

want to create a vector whose dimension reflects that size. Clearly
we will need to find a way to store arbitrary integers in types.How-
ever, that is not the only difficulty. What should the type of our
function be? A first attempt might look like:

listVec:: [e] → V e a

However, here the type variablea is (implicitly) universally quan-
tified over the entire expression; in other words it cannot depend
upon the argument tolistVec. What we need is something like

listVec:: [e] → (∃a. V e a)

where the result is an existential type. Then, each invocation of
listVeccan choose a new type for the type-variablea.

Existential types are not supported directly in Haskell, but we
can encode them using universals as follows. The trick is based on
a slight modification of the CPS (continuation-passing style) trans-
formation.

The CPS transformation encodes values of typea as values of
type (a→ r)→ r:

x =⇒ λ f → f x

We can reverse the encoding by applying the result toid ≡ λ x→
x (although this does not give an isomorphism in a non-strict lan-
guage, since the encoding was not surjective).

We can look at the transformation froma to (a → r) → r as
being the same as two applications of, for somer,

Nr a ≡ a→ r

A single application ofNr changes the place ofa from covari-
ant to contravariant, and can be seen as a kind of negation. The
encoding of existentials via universals:4

∃a. T (a) =⇒ (∀a. T (a)→ r)→ r ≡ Nr (∀a. Nr (T (a)))

can then be seen as analogous to the logical equivalence:

∃x.P(x) ⇐⇒ ¬∀x : ¬P(x).

Using this representation, we now have a type forlistVec:

listVec:: [e] → (∀a. V e a→ w)→ w

The problem of encoding integers and other values in types is
discussed in detail in [Kiselyov and Shan(2004)], which should be
referred to for more detail. The two functions we use from the
paper are the following:

classReflectNum swhere
reflectNum:: Num a⇒ s→ a

reifyIntegral:: Integral a⇒
a→ (∀s. ReflectNum s⇒ s→ w)→ w

The functionreifyIntegralencodes an integer as a type belonging
to classReflectNum; we can then callreflectNumon a dummy value
(just⊥) of that type to recover the encoded integer. Both functions
are defined in the moduleMisc.Preposein our library.5

4We could also introduce a data type

data ExistsT= ∀a. Exists(T a)

which is used in essentially the same way:

convert:: ExistsT→ (∀a. a→ r)→ r
convert(Exists x′) f = f x′

However, it turns out that this would just make our code more ver-
bose [Kiselyov and Shan(2004), §3.1].
5We have made a slight modification to representation of integers
used byMisc.Prepose. In the original version of Kiselyov and
Shan, a binary representation was used, with the most significant
digit last. In our representation, we have switched to decimal, with
the most significant digit first, to make error messages slightly eas-
ier to read:

Using those facilities, a complete definition oflistVecis now pos-
sible. The existential type variable is now constrained to be an in-
stance ofReflectNum.

We use the following simple type to represent an index type tak-
ing on integers between 0 and (n− 1): 6

newtypeL n = L Int
instanceReflectNum n⇒ Dom (L n)

The definition oflistVecfinally becomes:

listVec:: [e] → (∀n. (ReflectNum n)⇒ V e(L n)→ w)→ w
listVec l f =

let n = length l in
reifyIntegral n(λ (_ :: rn)→

f (fromList l :: (⊥ :: V e (L rn))))

where fromList is a function which converts a list to a vector of
known size.

The drawback of this approach is that the vector is only available
to the function argument tolistVec; after listVechas returned, it is
gone. There is no possibility of passinglistVeca function such as
id which returns its own argument, because the type oflistVecwill
not allow it. The type variablew can be given any type as long as
that type does not depend onn, becausew appears outside ofn’s
quantification expression.

Thus it usually becomes necessary to structure a program as an
argument to a series of functions such as the one above. The return
typew is often a monadic action such asIO (); all of the interesting
work - calculations, printing results - will then be done within the
argument tolistVec.

In an interactive environment, this is unfortunately not practical.
We discuss methods for using the library interactively later on.

2.3 Type of Singular Value Decomposition
The type of the function for singular value decomposition (SVD)

is worth mentioning. The SVD is defined for any matrixA, and
expressesA as a product

A = UDV⊤

whereU andV are orthogonal (unitary), andD is diagonal with
positive entries ordered decreasingly. We would like ansvd func-
tion to return the matricesU andV, and a vector which contains
the entries inD. The catch is that the number of entries inD, as
well as the number of columns ofU andV, is the minimum of the
number of rows and columns inA. How do we express this in a
type signature? We could defineD’s size to be, say, the number
of rows in A, and pad it with zeros whenA has more rows than
columns. But this is inefficient. Or we could define a type-class
Min a b cwhich expresses the property thatc is the minimum ofa
andb. But that would be difficult, and perhaps not sufficiently gen-
eral. Instead, we have chosen to use the existential type technique
again. Our definition is:

class(Fractional e, NumVector v e)⇒ FracVector v ewhere
...

> let v = useFast $ $(dim 13) ones
> let u = $(dim 42) v

Couldn’t match ‘X4 (X2 X_)’
against ‘X1 (X3 X_)’

6The “L” stands for “linear”. SinceL is an instance ofNum, and
theShowinstance hides the constructor, we generally think of it as
just another numeric type:
> domain :: [L (Plus (X5 X_))]
[0,1,2,3,4]

svd:: (Dom a, Dom b)⇒ v (a, b)→
(∀c. Dom c⇒

(v (a, c), v c, v (b, c))→ r)
→ r

Here, the typec is existentially quantified and cannot escape the
function argument. This is rarely a problem - in most uses of the
SVD (for example, in calculating the pseudo-inverse), we will do
something involving the diagonal matrixD, and then multiply byU
andV on both sides to get a matrix with the same dimensions asA
or A⊤. In case this isn’t enough, variants ofsvdwith more specific
types can be easily written withunsafeReshape, described below.

2.4 Reshaping
Sometimes it is necessary to convert between dimensions which

are provably the same, but for which the type checker is unable to
derive their equality. For instance, consider the following function:

type S= L One
toRow:: Dom a⇒ V e a→ V e (S, a)

It converts a vector to a “row vector”, i.e. a matrix with one row,
and whose column dimension is the same as that of the input vec-
tor. We could implement this function withslice, but that might be
inefficient. Instead, we have provided a function for converting di-
mensions,unsafeReshape. It “casts” a vector from one dimension
type to another. If the two types have a different number of ele-
ments, then there is a runtime error - hence the “unsafe”. However,
it can be used to implement “safe” functions such astoRow, where
it is known by the programmer that the input and output dimensions
will always be the same size.

unsafeReshape:: (Dom a, Dom b)⇒ v a→ v b

toRow:: Dom a⇒ V e a→ V e (S, a)
toRow= unsafeReshape

3. BACKEND
In this section we discuss the implementation of vectors.
As with arrays, one can imagine more than one vector imple-

mentation. The semantics could be strict or lazy; the internal rep-
resentation could be boxed or unboxed.

In order to accommodate multiple implementations, almost all
of the vector operations are members of classes. The main class
is Vector, but NumVector(vsum, ><> , margin, ones, ...), OrdVector
(vmin, vmax), FracVector(inv, mean, ...), andFloatVector(logdet,
rand) also exist.

In order to allow instances to specify a restricted class of ele-
ment types, we use a GHC extension called functional dependen-
cies [Jones(2000)]:7

classVector v e| v→ e where
...

For example, theFVectorinstance is declared as

instanceVector FVector Doublewhere
...

and theAVectorinstance as

instanceVector(AVector e) e where
...

Unlike the element type, there is no way to put a restriction on
the index types which aVector instance will accept, aside from
membership inDomwhich is required by each method:

7“Associated Type Synonyms” provide a possibly more intuitive
way of doing the same thing [Chakravarty et al.(2005)Chakravarty,
Keller, and Jones].

classVector v e| v→ e where
...

vector:: Dom a⇒ (a→ e)→ v a

We have provided two data types for which instances of these
classes are defined. The first,AVector, encapsulates anArray, and
can hold any element type. It is relatively slow for numerical com-
putations (about 200 times slower than GSLHaskell).

3.1 The GSLHaskell Backend
The second vector type we have implemented,FVector(for “fast”)

is based on Alberto Ruiz’s GSLHaskell library, which usesForeignPtrs
to store arrays compactly in C format, and employs the GSL, AT-
LAS, and LAPACK for numerical operations. It only supports the
Doubleelement type.

3.1.1 Detecting Matrices
The most difficult part about writing a vector backend based on

GSLHaskell was figuring out how to distinguish matrices and vec-
tors in routines that handle both, such asvector. We would like to
create aGSLMatrixfor matrix objects, and aGSLVectorfor vector
objects.8

In our API, anything with a pair index type is a matrix; and ev-
erything else is a vector. But there is no built-in facility in Haskell
for querying the type of a variable. At first glance, one should be
able to usedataCast2of Ralf Lammel’s generics library [Lämmel
and Jones(2003)]:

dataCast2:: Typeable2 t⇒ (∀a b. (Data a, Data b)⇒
c (t a b))→ Maybe(c a)

This facility allows us, once we define some helper functions, to
take two different courses of action depending on whether a dimen-
sion is a pair or not. However, if it is a pair then we will need the
member types of the pair to be instances ofDom; but dataCast2
only ensures that they are members ofData. So the SYB library is
unfortunately not useful to us.

Instead, what we have done is to add a special member function
to theDomclass:

class(Bounded a, Enum a, Ix a, Eq a, Show a)⇒ Dom a
where
...

domCastPair:: c a→ y a→
(∀d e. (Dom d, Dom e)⇒

(c (d, e))→ y (d, e))→
y a

domCastPair_ def _ = def

For most domains, the default given above is what we want. But
for pairs it has been redefined as:

domCastPair v_ fn = fn v

Thus, in pseudo-code, we can describe the action ofdomCastPair
as:

domCastPair v def fn=
if (v is parameterized by a pair type)then

fn v
else

def

Here is a small example. Sometimes, it is necessary to define
a dummy datatype to get the arguments to match the signature of
8Although it would be possible to only storeGSLVectors, and con-
vert each to aGSLMatrixwhenever an operation calls for a matrix,
this would require calculating the sizes of matrix column and row
dimensions repeatedly, probably involving calls toreflectNumeach
time, which can be inefficient

domCastPair, as we have done below:

newtypeArrayWrap e a= AW (Array a e)

instanceVector FVector Doublewhere
...

fromArray (ax :: Array a Double) :: FVector a=
domCastPair(AW ax)

(GV $ GSL.fromArrayV ax)
(λ (AW ax′)→ (GM $ GSL.fromArrayM ax′))

...

(fromArrayV andfromArrayM are functions from GSLHaskell for
constructing vectors and matrices, respectively)

3.1.2 TheFVectordatatype
TheFVectordatatype uses the GADT extension:

data FVector awhere
GV :: GSL.GSLVector Double→ FVector a
GM :: (Dom a, Dom b)⇒

GSL.GSLMatrix Double→ FVector(a, b)

This way, it is possible to avoid having to calldomCastPairfor
a vector which has already been created. This is used, for example,
in the definition of the indexing operator (!):

instanceVector FVector Doublewhere
...

(!) (GV agv) k = ...
(!) (GM agm) (i, j) = ...
...

In the GM version of (!), we have made use of the fact that the
compiler is able to infer that the second argument is a pair.

4. INTERACTION
One of the great features of languages such as Matlab and Octave

is their ability to facilitate interactive experiments viaa command
line interface. However, in a typical client of our library,vectors
only exist within a function called by a routine such aslistVec. So,
it is not possible to create them with one command and use them
with another.9

We solve the problem with Template Haskell [Sheard and Jones(2002)].
The resulting API is not as concise as Matlab, but it is usable.

Our primary observation is that if we could make vectors in-
stances ofLift:

classLift t where
lift :: t → ExpQ

then we could put them in quasi-quotes [| · |]. Since the result,
ExpQ, would then be independent of the vector dimension, this
would allow us to write something like:

let v = $(listVec[1, 2, 3] (λ v→ [| v |]))

This is essentially what we have done. It is possible to define
a Lift instance which is applicable to all vectors; however, since
there is no single vector datatype, this would lead to problems with
overlapping instances. So we settle for a function:

liftVec :: (GetType e, Lift e, GetType a, Dom a, Vector v e,
GetType(v a))
⇒ v a→ ExpQ

where we have definedGetTypein Misc.Prepose:

classGetType swhere
getType:: s→ Type

9One can imagine an interpreter which makes this possible, but it
would be very tricky and as far as I know, none exists.

With the following helper functions

qArray :: (GetType e, Lift e)⇒
((∀w. (Dom w, GetType w)⇒

AVector e w→ ExpQ)→ ExpQ)
→ ExpQ

qArray f = f (λ x→ liftVec x)

qFast:: ((∀w. (Dom w, GetType w)⇒
FVector w→ ExpQ)→ ExpQ)→ ExpQ

qFast f = f (λ x→ liftVec x)

we can now write for example10

> let v = $(qArray (listVec([1 . .4] :: [Double])))
> v
< 1.0, 2.0, 3.0, 4.0>
> dot v v
30.0

In addition there are macros which create identity functions for
vectors or matrices with integer indices of the specified dimensions:

dim :: Int → ExpQ
dim2:: Int → Int → ExpQ

and identity functions which force the use of a specific implemen-
tation:

useFast:: FVector a→ FVector a
useFast v= v

useArray:: AVector e a→ AVector e a
useArray v= v

Together, these allow us to write things like:

> let m= $(dim23 4) $useFast ones
>m
< # 1.0, 1.0, 1.0, 1.0;

1.0, 1.0, 1.0, 1.0;
1.0, 1.0, 1.0, 1.0 #>
>m ><> (eye+ ones)
< # 5.0, 5.0, 5.0, 5.0;

5.0, 5.0, 5.0, 5.0;
5.0, 5.0, 5.0, 5.0 #>

Thus, creating a new vector is a bit clumsy, but manipulatingit
is straightforward.

Lastly, we should note a few ongoing issues with the approach.
First, there is an open bug in Template Haskell which prevents us
from lifting vectors above a certain size:

> $(qFast (listVec [1..10000]))

ghc-6.4.2: panic! (the ‘impossible’ happened,

GHC version 6.4.2):

linkBCO: >= 64k insns in BCO

This is not a huge burden, since there are ways around it. For
instance, if the dimensions of a vector are known, then one can use
dim and fromList rather thanlistVec. The second problem is that
programs using Template Haskell currently can’t be profiled. This
is a more serious problem, and means that we must recommend
against using any of our template facilities outside of an interactive
interpreter.

10Note that $(qArray$listVec([1 . .4]::[Double]))won’t typecheck.
The function ($)has type∀ b a. (a → b) → a → b, which
doesn’t explicitly mention the universal quantification inthea vari-
able. Since GHC implements predicative polymorphism, in which
type variables cannot be instantiated by polymorphic types, $’s sec-
ond argument type cannot be unified with the partial application of
listVec[Jones and Shields(2005)] [Botlan and Remy(2003)].

Lastly, it would be nice to be able to use Template haskell in type
signatures, since we are primarily using it to create types.However
this doesn’t seem to be possible [Jones(2006)].

5. EXPERIMENT
To better understand both the efficiency and the usability of our

library, we have implemented a medium-sized algorithm fromma-
chine learning, which is described in more detail here:http://
www.gatsby.ucl.ac.uk/~zoubin/course05/lect7var.pdf.

The exact computation which is performed is not important. Briefly,
it is a variational EM (expectation-maximization, ref Dempster et
al) algorithm for learning the parameters of the “latent binary fac-
tors model” (described in the next section). The algorithm was
chosen because it is only partially amenable to expression in terms
of matrices - a certain amount of looping over indices is necessary
as well - and because of its familiarity to the author. The reader can
skip to section 5.2 at this point if desired.

5.1 Algorithm
The model is described as follows. There areK binary latent

variablessi ∈ {0,1}, parametersθ = {{µi , πi}
K
i=1, σ

2}, where eachµi

is a real-valued vector with dimensionD, and an observation vector
y of dimensionD distributed as:

p(s|π) =

K∏

i=1

p(si |πi) =
K∏

i−1

π
si
i (1− πi)

(1−si) (1)

p(y|s1, . . . , sK ,µ, σ
2) = N(

K∑

i=1

siµi , σ
2I) (2)

We are givenN samples ofy, and must estimate the parame-
ters and the posterior over eachsi. The variational approximation
we choose ignores dependencies between the variablessi in the
posterior, it estimatesp(s|y) as

∏
i p(si |y). In our code, we define

λi ≡ p(si |y). The most time consuming part is the E-step, the cal-
culation ofλ, which is done by iterating

for i = 1 . .K
λi ← sigm(log πi

1−πi
+

1
σ2 (y−

∑
j,i λ jµ j)

⊤µi −
1

2σ2µi⊤µi)

end

where sigm(x) ≡ 1/(1+e−x) is the logistic (sigmoid) function. This
is done in the functionmeanFieldStep.

The M-step updates the parameters using theλ vector from the E-
step; it is a straightforward maximum-likelihood calculation which
is easily expressed in terms of matrix operations.

5.2 Implementation
The Haskell implementation is shown in appendix A, and the

Octave implementation in appendix B.
There are many advantages to using Haskell in this kind of ap-

plication, which we don’t go into in detail. For instance, proper
closures are apparently not available in Octave or Matlab, and al-
though we don’t need to use them here, they are often very useful.
Easy concurrency is another benefit of using Haskell.

In the following sections we describe only theproblemswe en-
countered in implementing the Haskell version of the algorithm,
stemming from our use of the Haskell language and the compiler
GHC.

5.3 Purity Problems
The first difficulty is that the iterative update above needs to be

in exactly that form for convergence. As functional programmers,
we’d like to update all ofλ at once, with each newλi depending

only on the old value ofλ. However, in this algorithm eachλi

needs to be updated independently, using the updated versions of
previous elements{λ j}

i−1
j=0, otherwise the dynamics of the fix-point

iteration are unstable.11 To facilitate this, we added a member to
theVectorclass,vectorUpdate:

classVector v e| v→ e where
...

vectorUpdate:: (Dom a)⇒ v a→ [a] →
(v a→ a→ e)→ v a

This takes a vector, a list of indices to modify, and a function, and
returns the “updated” vector obtained by applying the function to
each index and to the partially updated vector. For the GSLHaskell-
basedFVector, this has an efficient implementation which does all
of the modifications in-place.

The function was sufficient for the example program, but it is not
possible to use it with more than one vector at once, so it is possible
that a generalization might be needed at some point. (One could
imagine a “mutable vector” class, withfreezeandthawoperations
in analogy to the array modules in the standard libraries)

5.4 Laziness Problems
Since the program is iterative, we need to be sure that all the

computations of one iteration are performed before entering the
next iteration. Typically, this is done with theseqbuilt-in; how-
everseqonly forces the evaluation of a single thunk, and therefore
isn’t sufficient for data with more than one level of structure, and
won’t work automatically for allVectorinstances.

Another possibility is to have all our data-types implementa
class such asDeepSeq(ref); however, this would require many
additional class membership annotations in polymorphic programs
wishing to make even limited use the facility.

What we have done instead is add a membervseqto theVector
class, so that all users of theVectorAPI have a way to force the
evaluation of a vector. This leaves open the possibility of more or-
ganized approaches such asDeepSeq, but doesn’t commit to them.

With this, our program need only define a function to force the
whole state between iterations:

data State v d k= S{
sMu:: v (d, k),
sSigma2:: R,
sPie:: v k
}

seqState s= vseq(sMu s). vseq(sPie s).
seq(sSigma2 s)

Dealing with such considerations is a task which is a bit tire-
some and is not required in strict languages, and which is absent
from the Octave version of our program. On the bright side, with
experimental features such as Rob Ennals’ “Optimistic Evaluation”
[Ennals and Jones(2003)] it would seem to be unnecessary. How-
ever, methods such as his for prospective thunk evaluation seem to
have only enjoyed marginal popularity, because they are complex
to implement and maintain, and because they can cause significant
slow-downs in programs with many small thunks. In vector-based
numerical computations, though, most of the memory and time
tends to be spent on a few large thunks. We find it unfortunate
that there is currently no working optimistic evaluation patch for
GHC.

5.5 Casting

11Other important algorithms, such as the Gauss-Seidel method, use
similar iterative updates.

Another part of theVector interface which was only added after
experience with the example program were the following methods:

type One= Plus (X1 X_)
type S= L One
classVector v e| v→ e where
...

toRow:: Dom a⇒ v a→ v (S, a)
toCol :: Dom a⇒ v a→ v (a, S)
toS:: e→ v (S, S)
fromRow:: Dom a⇒ v (S, a)→ v a
fromCol:: Dom a⇒ v (a, S)→ v a
fromS:: v (S, S)→ e

byRow:: (Dom a, Dom b)⇒ (a→ v b)→ v (a, b)
byCol:: (Dom a, Dom b)⇒ (b→ v a)→ v (a, b)

The first six express simple dimensional equivalences - viewing
a vector as a row or column vector, etc. The last two make it eas-
ier to construct a matrix from row or column vectors. Collectively,
they are used quite a lot in the example program. Perhaps embar-
rassingly, none of the functions are necessary in Octave - some con-
versions are done automatically, others are expressed rather cleanly
with the M-code syntax.

Another class of conversions is between numeric types:fromIntegral
is used twice, to convert integer dimension sizes toDoubles; again,
these are not typically necessary in other numerical languages.

It would be nice if there were a subtyping facility, whereby val-
ues could be automatically promoted to members of parent types,
to make at least some of these conversions unnecessary. In some
cases, such automatic conversions might be undesirable because
they could increase the number of bugs by weakening the type sys-
tem. However, the conversions cited above are between represen-
tations which are either strictly or semantically equivalent, so I see
no danger in performing them automatically. Yet I imagine such a
feature would complicate the type checker considerably.

5.6 Type Checking Difficulties
While the design of our library has made it possible for the type

checker to guarantee that programs written with it will not have
conformability errors, getting a buggy program to type-check in the
first place is much more difficult than we had initially imagined.

As an example, we have left a line commented out in the func-
tion mstepin appendix A. When this line is swapped for the one
above it, so that× appears in the place of><> , then GHC gives the
following error:

LearnBinFactors.hs:132:9:

Couldn’t match the rigid variable ‘d’

against ‘L s’

‘d’ is bound by the type signature for

‘doLearn’

Expected type: State FVector d (L s)

Inferred type: State FVector d d

The line of the error message is in the middle of the last function,
doLearn, which is quite a bit removed from the actual bug. What
happened is that the bug forced the unification of two type vari-
ables,d andk, all over the program. The error message refers to
the line which indicates that they should be different, not the place
where they were erroneously unified.

One could blame the fact thatmstephas not been given a type
signature. With a type signature formstep, we would be able to
indicate that the type variablesd andk are separately universally
quantifiedin that function, and that might help us better track down
the bug.

Here is a type signature formstep:

mstep:: (Dom n, Dom d, Dom k, Vector v R,
Num(v (n, k)), Num(v (d, k)), Num(v (n, d)),
FracVector v R)⇒
Params v n d→ v (n, k)→ v (k, k) → State v d k

It’s quite long! Apparently, polymorphism has a high cost. We
can make a version wherev has been specialized toFVector:

mstep:: (Dom n, Dom d, Dom k)⇒
Params FVector n d→ FVector(n, k)→
FVector(k, k)→ State FVector d k

However, this is not ideal, because we would like to let our code
be typed as generally as possible.

If the language allowed us to omit class membership constraints,
it would be very helpful, since such constraints actually have noth-
ing to do with what we’re trying to communicate to the type checker,
namely thatd andk are different. That would make the first type
signature much shorter:

mstep:: ...⇒ Params v n d→ v (n, k)→ v (k, k)→
State v d k

In any case, when we give a signature tomstep, the error be-
comes:

LearnBinFactors.hs:36:0:

Quantified type variable ‘k’ is unified with

another quantified type variable ‘d’

When trying to generalise the type inferred

for ‘mstep’

This is referring to the first line ofmstep, notdoIters. It’s an im-
provement, but still not very helpful. There are a lot of operations
inside the functionmstep, and with such a vague error message, the
programmer has no recourse but to check each of them manually.

Furthermore, one might wonder whymstepneeds a single type
signature in the first place. We’ve already made type annotations
on the parameters, which use different variablesd andk:

mstep (p::Params v n d) (es::v(n,k))

(ess::v(k,k)) = (s::State v d k)

If we had intended for the places occupied byd andk to always
represent the same type, then why would we have put different vari-
able names in them? One might imagine that the compiler should
be able to notice this.

But we can go even further. If the compiler knew that the vari-
ables were meant to be different atdoIters, even without themstep
type signature, then it should have been able to give us a compile-
time error at least as useful as the run-time error which Octave gives
us, when we pass objects of different dimensions toLearnBinFactors.

Let’s try inserting the same bug into the Octave version of the
program, in other words changing

mu = (ESS \ (ES’*Y))’;

to

mu = (ESS \ (ES’.*Y))’;

This yields, after 48 seconds, the following error message:

error: product: nonconformant arguments

(op1 is 8x400, op2 is 400x16)

error: evaluating binary operator ‘.*’

near line 22, column 17

Here, Octave gave the exact position of the error, and we didn’t
even have to add any type signatures. It’s true that the errorwas
caught at runtime, not compile-time - and it took 48 seconds for
the error to show up. Yet, it took us much longer to track down the
error in the Haskell version; and in the case of the Octave version,
we spent those 48 seconds reading a book.

Thus, in our opinion, insufficiently helpful compiler errors are
currently the greatest impediment to using the library. Conceivably,
by following the data flow of the program, GHC could produce an
error message which is just as informative as Octave’s errormes-
sage:

LearnBinFactors.hs:132:9:

Couldn’t match the rigid variable ‘d’

against ‘L s’

...

Probable quantified type mismatch

arising from use of ’*’ at

LearnBinFactors.hs:42:35

But that work remains to be done.
It should be noted that we have only used GHC in our tests,

and that there are compilers which put much more effort into giv-
ing good error messages. However, we depend on many advanced
Haskell features - functional dependencies in type classes, GADTs,
template haskell - many of which are at present only available in
GHC.

This isn’t a reason to give up hope. We believe that librariessuch
as ours, based on strongly typed functional programming languages
such as Haskell, are the future of scientific computing. It’sjust a
matter of getting to the point where they are better than the status
quo.

Furthermore, we should note that the benefit of using Haskell
is expected to be greater for larger programs, where functions are
called from multiple contexts, and run-times are longer - insome
cases Haskell may already be preferable, in spite of the issues we
have mentioned.

6. PERFORMANCE
We found that the Haskell implementation was significantly faster

than the Octave implementation. We made some performance im-
provements to GSLHaskell, most importantly linking to ATLAS
and LAPACK and switching the implementation of matrix inver-
sion from GSL to LAPACK (for a factor of 10 speed-up). Octave
uses the same or similar libraries, so this is reasonable. Wetook
care to ensure that no operations were hard-coded in one version of
the program but not the other.

Our version of ATLAS is the standard Debian package
atlas3-base, version 3.6.0-20.2, and has not been specially op-
timized for our system. LAPACK is packagelapack3 version
3.0.20000531a-6, and GSL is packagelibgsl0 version 1.8-1. We
ran our tests on a 1250 MHz AMD Athlon.

We used GHC version 6.4.2, compiling with-O3, and Octave
2.9.5.

The Haskell version of the program takes 545 seconds, while the
octave version takes 890 seconds, over 60% longer.

The full library and example programs are available at:

http://ofb.net/~frederik/stla/

7. FUTURE WORK
One can imagine a variety of improvements which could be made

to our library.
One feature which would be useful is to have a single vector

type which can hold arbitrary elements, yet which is as efficient as
FVector for certain element types such asDouble. We could re-
quire the element type to beTypeable, and useData.Typeable.cast
to switch to the optimized implementation when possible, using
GADTs again as in section 3.1. This could be done as an extension
of FVector. It would have the advantage of allowing, for instance,

anFVectormatrix to be converted to a vector of row vectors, with-
out having to switch to a vector implementation which can accept
other vectors as elements.

We have been thinking about how to expose more information to
the type system. To complicate our terminology, one possibility is
to make dimensionality in the physics sense part of each numeri-
cal type - something like length, time, etc. For instance, itwould
become illegal to take the logarithm of any value which is not“di-
mensionless” in the physics sense. We know of one Haskell library
(ref Aaron Denney) which accomplishes this. This would appear
to solve the problem of distinguishing a matrix from its inverse
(since if x is a scalar then (xA)−1

= x−1A−1) however, it is unclear
how physics dimensions could distinguish a (square) matrixfrom
its transpose (which, by the way, is sometimes equal to the inverse).
It is an interesting area that we have not looked into.

One would like to make it possible to do fast versions of oper-
ations such asslice andmargin. Most of the function arguments
to those methods will be very simple - such as rearranging theele-
ments of a tuple or other term:

trans m≡ slice (λ (x, y)→ (y, x)) m

If we could somehow deconstruct simple functions such asλ (x, y)→
(y, x), then we could implementslicevery efficiently using C helpers.
Alternatively, we could require users to specify such functions man-
ually via a special datatype. However, it is unclear how the result-
ing syntax could be made as clean as the syntax for creating a clo-
sure. In any case, a solution to this problem would greatly facilitate
the manipulation of more structured quantities such as tensors.

8. CONCLUSION
Our library has shown that strongly typed linear algebra is feasi-

ble in Haskell. The implementation is made possible by a num-
ber of relatively advanced language features: GADTs, template
haskell, functional dependencies, rank-2 polymorphism. While our
library is currently less usable than Octave or Matlab, it isalready
much more efficient than Octave, and we feel that with certain com-
piler improvements and language features it will become a better
programming environment as well.

9. ACKNOWLEDGEMENTS
Thanks to Alberto Ruiz for writing GSLHaskell and answering

my questions about it, to Oleg Kiselyov and Chung-chieh Shanfor
many helpful discussions in the early design of the library,and to
Ralf Lammel for patiently explaining his generics library.

10. REFERENCES
D. Botlan and D. Remy. MLF: Raising ML to the power of
system-F.ACM International Conference on Functional
Programming. Uppsala, Sweden, pages 27–38, 2003.
M. Chakravarty, G. Keller, and S. Jones. Associated type
synonyms.Proceedings of the Tenth ACM SIGPLAN
International Conference on Functional Programming,
pages 241–253, 2005.
J. Eaton. GNU Octave: a high-level interactive language for
numerical applications.GNU/Free Software Foundation,
Boston, 1998.
J. Eaton. Octave: Past, present and future.Proceedings of the
2nd International Workshop on Distributed Statistical
Computing, March 2001.
R. Ennals and S. Jones. Optimistic evaluation: an adaptive
evaluation strategy for non-strict programs.Proceedings of
the eighth ACM SIGPLAN international conference on
Functional programming, pages 287–298, 2003.

C. V. Hall, K. Hammond, S. L. P. Jones, and P. L. Wadler.
Type classes in haskell.ACM Trans. Program. Lang. Syst.,
18(2):109–138, 1996. ISSN 0164-0925.
M. P. Jones. Type classes with functional dependencies. In
ESOP ’00: Proceedings of the 9th European Symposium on
Programming Languages and Systems, pages 230–244,
London, UK, 2000. Springer-Verlag. ISBN 3-540-67262-1.
S. Jones. Re: splices in type signatures. Message to the
Template Haskell mailing list;
http://thread.gmane.org/gmane.comp.lang.

haskell.template/321/focus=323, June 2006.
S. Jones and M. Shields. Practical type inference for
arbitrary-rank types.Submitted to the Journal of Functional
Programming, 2005.
O. Kiselyov and C. Shan. Functional pearl: implicit
configurations–or, type classes reflect the values of types.In
Haskell ’04: Proceedings of the 2004 ACM SIGPLAN
workshop on Haskell, pages 33–44, New York, NY, USA,
2004. ACM Press. ISBN 1-58113-850-4.
R. Lämmel and S. Jones. Scrap your boilerplate: a practical
design pattern for generic programming.ACM SIGPLAN
Notices, 38(3):26–37, 2003.
U. Matlab. The Mathworks Inc.Natick, MA, 2003.
C. Okasaki. From fast exponentiation to square matrices: an
adventure in types. InICFP ’99: Proceedings of the fourth
ACM SIGPLAN international conference on Functional
programming, pages 28–35, New York, NY, USA, 1999.
ACM Press. ISBN 1-58113-111-9.
D. Rémy. Simple, partial type-inference for System F based
on type-containment.Proceedings of the tenth ACM
SIGPLAN international conference on Functional
programming, pages 130–143, 2005.
A. Ruiz. Matrix computations in haskell based on the gsl.
http:

//dis.um.es/~alberto/GSLHaskell/matrix.pdf, June
2005.
T. Sheard and S. Jones. Template meta-programming for
Haskell.ACM SIGPLAN Notices, 37(12):60–75, 2002.
M. Shields and S. P. Jones. First class modules for Haskell.
In 9th International Conference on Foundations of
Object-Oriented Languages (FOOL 9), Portland, Oregon,
pages 28–40, Jan. 2002.

APPENDIX

A. EXAMPLE PROGRAM, HASKELL VER-
SION

import Control.Exception
import Debug.Trace
import Random

import Vector

defaults= P{pY= ⊥, pNumFactors= 8,
pMaxSteps= 30, pIters= 20}

data Params v n d= P{
pY :: v (n, d),
pMaxSteps:: Int,
pIters:: Int,
pNumFactors:: Int
}

showParams p=
show(pY p, pMaxSteps p, pIters p, pNumFactors p)

data State v d k= S{

sMu:: v (d, k),
sSigma2:: R,
sPie:: v k
}

showState s= show(sMu s, sSigma2 s, sPie s)

seqState s= vseq(sMu s). vseq(sPie s).
seq(sSigma2 s)

but= flip assert

myXlogyx x y= x× log (y / (x+. 1.0e− 20))

mstep(p :: Params v n d) (es:: v (n, k))
(ess:: v (k, k)) = (s :: State v d k)

‘but‘ (sigma2> 0.0)
where

s= S{sMu= (mu:: v (d, k)), sSigma2= sigma2, sPie= pie}
(y :: v (n, d)) = pY p
(mu:: v (d, k)) = trans (pinv ess><> (trans es><> y))
− − (mu:: v (d, k)) = trans (pinv ess× (trans es><> y))

sigma2= (vsumSq y+ vsum(mu× (mu ><> ess)) −
2× vsum(es× (y ><> mu))) /
(fromIntegral$ vlen y)

pie= fromRow$ unif ><> es

meanFieldStep(p :: Params v n d) (s :: State v d k)
(lambda0:: (v (n, k))) =

(lambda:: v (n, k), f :: R, dist :: R)
where

(mu, sigma2, pie) = (sMu s, sSigma2 s, sPie s)
y = pY p
d = fromIntegral$ cols y

pieExpr= log (pie/ (1− pie))
lambda= byRow$ λ (p :: n)→

let y_p = getRow y pin
vectorUpdate(fromRow$ getRow lambda0 p) domain$

λ lambda_p′ (i :: k)→
sigm$ (pieExpr! i) + (1 / sigma2) ×
let mu_i = getCol mu i

mu_ss= vsumSq mu_i / 2
lambda_p = toRow lambda_p′ in

fromS((y_p− lambda_p ><> trans mu+
(lambda_p ! (0, i)) .∗ (trans mu_i)) ><> mu_i) −mu_ss

f = sum$ foreach$ λ p→
let lp = getRow lambda p

yp= getRow y p
f _ = vsum(myXlogyx lp(toRow pie) +

myXlogyx(1− lp) (toRow$ 1− pie))
− d × log sigma2/ 2
− (1 / (2× sigma2)) × vsumSq

(yp− lp ><> (trans mu))
− (1 / (2× sigma2)) × vsum

((lp − lp ∗∗ 2)× (sumCols(mu×mu)))
− (d / 2)× log (2× pi)

in f _
dist = sqrt$ vsumSq(lambda− lambda0)

initState() = do -- :: IO (State v d k)= do
(mu0:: v (d, k))← randIO
putStrLn$ “size of mu0: ”++ (show(rows mu0, cols mu0))
(sigma2_0 :: R)← randomIO>>= (return. (+0.1))
(pie0 :: v k)← randIO
return$ S{sMu= mu0, sSigma2= sigma2_0, sPie= pie0}

learnBinFactors(p :: Params v n d) = do
s← initState()
doIters p1 s

doIters p n s| n > (pIters p) = return s
doIters(p :: Params v n d) (n :: Int) (s :: State v d k) =

seqState s$ trace (“EM iteration: ” ++ show n) $
do
let (mu, sigma2, pie) = (sMu s, sSigma2 s, sPie s)
(lambda0:: v (n, k))← randIO
let (lambda:: v (n, k), f) = meanField p s lambda0
let es= lambda
let ess= (trans lambda) ><> lambda+

diag (fromRow$ sumCols lambda−

sumCols(lambda× lambda))
let s′ = mstep p es ess
doIters p(n+ 1) s′

meanField(p :: Params v n d) (s :: State v d k)
(lambda0:: v (n, k)) =

let {(lambda, f , n) =
loopUntil (lambda0, minBound, 0)

(λ (lambda, f , n)→
let (lambda′ , f ′, dist) = meanFieldStep p s lambda
in
(if f ′ < f then

trace (“F decreased in MeanField step ”++
show n++ “ from ” ++ show f++ “ to ” ++ show f′)

elseid) $
trace (“f=” ++ show f) $
trace (“dist=” ++ show dist) $
((lambda′ , f ′, n+ 1), n+ 1< (pMaxSteps p)

in trace (“meanField took ”++ show n++ “ steps”) $
(lambda, f)

loopUntil :: a→ (a→ (a, Bool))→ a
loopUntil x0 f = let (x, cont) = f x0 in

if cont then loopUntil x f elsex

main= do
readMatrixFile “data.txt” doLearn

doLearn:: ∀d n. (Dom n, Dom d)⇒ FVector(n, d)→ IO ()
doLearn y= do

let p = defaults{pY= y}
putStrLn$ “(n,d)=” ++ show(rows y, cols y)
reifyIntegral (pNumFactors p) (λ (_ :: k_)→ do

(s :: State v d(L k_))←
learnBinFactors p

putStrLn$ “mu=” ++ show(sMu s)
putStrLn$ “pi=” ++ show(sPie s)
putStrLn$ “sigma2=” ++ show(sSigma2 s)
)

B. EXAMPLE PROGRAM, OCTAVE VER-
SION

function [mu, sigma2, pie] = MStep(Y,ES,ESS)

Y is NxD

ES is NxK

ESS is KxK

mu is DxK

sigma2 is 1x1

pie is 1xK

[N,D] = size(Y);

if (size(ES,1) != N)

error(’ES must have the same number of rows as Y’);

endif

K = size(ES,2);

if (!isequal(size(ESS),[K,K]))

error(’ESS must be square and have \

the same number of columns as ES’);

endif

mu = (ESS \ (ES’*Y))’;

sigma2 = (sum(sumsq(Y))+sum(sum(mu.*(mu*ESS)))-

2*sum(sum(ES.*(Y*mu))))/(N*D);

if sigma2 < 0

error(’sigma2 negative in MStep’);

endif

pie = mean(ES,1);

endfunction

function [l,F,dist] =

MeanFieldStep(y,mu,sigma2,pie,lambda0)

y is N x D

mu is D x K

pie is 1 x K

lambda is N x K

sigm = @(x) 1./(1+exp(-x));

xlogax = @(x,a) x.*log(a./(x+realmin));

n = rows(y);

d = columns(y);

k = columns(mu);

l = lambda0;

F = 0;

for p=(1:n)

yp = y(p,:);

for i=(1:k)

l(p,i) = sigm(log(pie(i)./(1-pie(i))) + \

(1/sigma2) * \

(yp-l(p,:)*mu’+l(p,i)*mu(:,i)’) * mu(:,i) - \

sumsq(mu(:,i))/(2*sigma2));

endfor

lp = l(p,:);

f_ = sum(xlogax(lp,pie) + xlogax(1-lp,1-pie)) - \

d*log(sigma2)/2 - \

(1/(2*sigma2))*sumsq(y(p,:) - lp*mu’) - \

(1/(2*sigma2))* \

(sum((lp-lp.^2).*sumsq(mu,1))) - \

(d/2)*log(2*pi);

if !isnan(f_)

F += f_;

endif

endfor

dist = sqrt(sum(sumsq(l-lambda0)))

endfunction

function [lambda,F] =

MeanField(Y,mu,sigma2,pie,lambda0,maxsteps)

lambda=lambda0;

F = -realmax;

for step=(1:maxsteps)

F0 = F

[lambda,F,dist] =

MeanFieldStep(Y,mu,sigma2,pie,lambda);

if F < F0

fprintf(stderr, "F decreased in \

MeanField step %d from %f to \

%f\n", step, F0, F);

endif

endfor

fprintf(stderr,"MeanField took %d steps\n",maxsteps);

endfunction

function [mu, sigma2, pie] =

LearnBinFactors(Y,K,iterations,maxsteps)

Y: data

K: number of features

N = rows(Y);

D = columns(Y);

mu is D x K

pie is 1 x K

lambda is N x K

pie = rand(1,K);

mu = rand(D,K);

sigma2 = rand(1,1)+0.1;

lambda0 = rand(N,K);

for iter=(1:iterations)

lambda0 = rand(N,K);

fprintf(stderr,"Doing E step\n");

[lambda, F] = MeanField(Y, mu, sigma2,

pie, lambda0, maxsteps);

F is lower bound on likelihood

F

ES = lambda;

ESS = lambda’*lambda + \

diag(sum(lambda,1)-sumsq(lambda,1));

fprintf(stderr,"Doing M step\n");

[mu, sigma2, pie] = MStep(Y,ES,ESS);

endfor

endfunction

